922 resultados para Collagen Type III
Resumo:
BACKGROUND: Risk assessment with a thorough family health history is recommended by numerous organizations and is now a required component of the annual physical for Medicare beneficiaries under the Affordable Care Act. However, there are several barriers to incorporating robust risk assessments into routine care. MeTree, a web-based patient-facing health risk assessment tool, was developed with the aim of overcoming these barriers. In order to better understand what factors will be instrumental for broader adoption of risk assessment programs like MeTree in clinical settings, we obtained funding to perform a type III hybrid implementation-effectiveness study in primary care clinics at five diverse healthcare systems. Here, we describe the study's protocol. METHODS/DESIGN: MeTree collects personal medical information and a three-generation family health history from patients on 98 conditions. Using algorithms built entirely from current clinical guidelines, it provides clinical decision support to providers and patients on 30 conditions. All adult patients with an upcoming well-visit appointment at one of the 20 intervention clinics are eligible to participate. Patient-oriented risk reports are provided in real time. Provider-oriented risk reports are uploaded to the electronic medical record for review at the time of the appointment. Implementation outcomes are enrollment rate of clinics, providers, and patients (enrolled vs approached) and their representativeness compared to the underlying population. Primary effectiveness outcomes are the percent of participants newly identified as being at increased risk for one of the clinical decision support conditions and the percent with appropriate risk-based screening. Secondary outcomes include percent change in those meeting goals for a healthy lifestyle (diet, exercise, and smoking). Outcomes are measured through electronic medical record data abstraction, patient surveys, and surveys/qualitative interviews of clinical staff. DISCUSSION: This study evaluates factors that are critical to successful implementation of a web-based risk assessment tool into routine clinical care in a variety of healthcare settings. The result will identify resource needs and potential barriers and solutions to implementation in each setting as well as an understanding potential effectiveness. TRIAL REGISTRATION: NCT01956773.
Resumo:
We have recently characterized two types of rat 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD) isoenzymes expressed in adrenals and gonads. In addition, we have cloned a third type of cDNA encoding a predicted type III 3β-HSD protein specifically expressed in the male rat liver which shares 80% similarity with the two other isoenzymes. Transient expression in human HeLa cells of the cDNAs reveals that the type III 3β-HSD protein does not display oxidative activity for the classical substrates of 3β-HSD, in contrast to the type I 3β-HSD isoenzyme. However, in the presence of NADH, type III isoenzyme, in common with the type I isoform, converts 5α-androstane-3,17-dione (A-dione) and 5α-dihydrotestosterone (DHT) to the corresponding 3β-hydroxysteroids. In fact, the type I and the type III isoenzymes have the same affinity for DHT with K(m) values of 5.05 and 6.16 μM, respectively. When NADPH is used as cofactor, the affinity for DHT of the type III isoform becomes higher than that of the type I isoform with K(m) values of 0.12 and 1.18 μM, respectively. The type III isoform is thus a 3-ketoreductase using NADPH as preferred cofactor which is responsible for the conversion of 3-keto-saturated steroids such as DHT and A-dione into less active steroids.
Resumo:
The main success of my thesis has been to establish the mechanism by which antifreeze proteins (AFPs) bind irreversibly to ice crystals, and hence prevent their growth. AFPs organize ice-like water on their ice-binding site, which then merges and freezes with the quasi-liquid layer of ice. This was revealed from studying the exceptionally large (ca. 1.5-MDa) Ca 2+-dependent AFP from the Antarctic bacterium Marinomonas primoryensis (MpAFP). The 34-kDa antifreeze- active region of MpAFP was predicted to fold as a novel Ca 2+-binding β-helix. Site-directed mutagenesis confirmed the model and demonstrated that its ice-binding site (IBS) consisted of solvent-exposed Thr and Asx parallel arrays on the Ca 2+-binding turns. The X-ray crystal structure of the antifreeze region was solved to a resolution of 1.7 Å. Two of the four molecules within the unit cell of the crystal had portions of their IBSs freely exposed to solvent. Identical clathrate-like cages of water molecules were present on each IBS. These waters were organized by the hydrophobic effect and anchored to the protein via hydrogen bonds. They matched the spacing of water molecules in an ice lattice, demonstrating that anchored clathrate waters bind AFPs to ice. This mechanism was extended to other AFPs including the globular type III AFP from fishes. Site-directed mutagenesis and a modified ice-etching technique demonstrated this protein uses a compound ice-binding site, comprised of two flat and relatively hydrophobic surfaces, to bind at least two planes of ice. Reinvestigation of several crystal structures of type III AFP identified anchored clathrate waters on the solvent-exposed portion of its compound IBS that matched the spacing of waters on the primary prism plane of ice. Ice nucleation proteins (INPs), which can raise the temperature at which ice forms in solution to just slightly below 0oC, have the opposite effect to AFPs. A novel dimeric β-helical model was proposed for the INP produced by the bacterium Pseudomonas borealis. Molecular dynamics simulations showed that INPs are also capable of ordering water molecules into an ice- like lattice. However, their multimerization brings together sufficient ordered waters to form an ice nucleus and initiate freezing.
Resumo:
Antifreeze proteins (AFPs) are produced by a variety of organisms to either protect them from freezing or help them tolerate being frozen. Recent structural work has shown that AFPs bind to ice using ordered surface waters on a particular surface of the protein called the ice-binding site (IBS). These 'anchored clathrate' waters fuse to particular planes of an ice crystal and hence irreversibly bind the AFP to its ligand. An AFP isolated from the perennial ryegrass, Lolium perenne (LpAFP) was previously modelled as a right-handed beta helix with two proposed IBSs. Steric mutagenesis, where small side chains were replaced with larger ones, determined that only one of the putative IBSs was responsible for binding ice. The mutagenesis work also partly validated the fold of the computer-generated model of this AFP. In order to determine the structure of the protein, LpAFP was crystallized and solved to 1.4 Å resolution. The protein folds as an untwisted left-handed beta-helix, of opposite handedness to the model. The IBS identified by mutagenesis is remarkably flat, but less regular than the IBS of most other AFPs. Furthermore, several of the residues constituting the IBS are in multiple conformations. This irregularity may explain why LpAFP causes less thermal hysteresis than many other AFPs. Its imperfect IBS is also argued to be responsible for LpAFP's heightened ice-recrystallization inhibition activity. The structure of LpAFP is the first for a plant AFP and for a protein responsible for providing freeze tolerance rather than freeze resistance. To help understand what constitutes an IBS, a non-ice-binding homologue of type III AFP, sialic acid synthase (SAS), was engineered for ice binding. Point mutations were made to the germinal IBS of SAS to mimic key features seen in type III AFP. The crystal structures of some of the mutant proteins showed that the potential IBS became less charged and flatter as the mutations progressed, and ice affinity was gained. This proof-of-principle study highlights some of the difficulties in AFP engineering.
Resumo:
Reduced arterial compliance precedes changes in blood pressure, which may be mediated through alterations in vessel wall matrix composition. We investigated the effect of the collagen type I-1 gene (COL1A1) +2046G>T polymorphism on arterial compliance in healthy individuals. We recruited 489 subjects (251 men and 238 women; mean age, 22.6±1.6 years). COL1A1 genotypes were determined using polymerase chain reaction and digestion by restriction enzyme Bal1. Arterial pulse wave velocities were measured in 3 segments, aortoiliac (PWVA), aortoradial (PWVB), and aorto-dorsalis-pedis (PWVF), as an index of compliance using a noninvasive optical method. Data were available for 455 subjects. The sample was in Hardy-Weinberg equilibrium with genotype distributions and allele frequencies that were not significantly different from those reported previously. The T allele frequency was 0.22 (95% confidence interval, 0.19 to 0.24). Two hundred eighty-three (62.2%) subjects were genotype GG, 148 (35.5%) subjects were genotype GT, and 24 (5.3%) subjects were genotype TT. A comparison of GG homozygotes with GT and TT individuals demonstrated a statistically significant association with arterial compliance: PWVF 4.92±0.03 versus 5.06±0.05 m/s (ANOVA, P=0.009), PWVB 4.20±0.03 versus 4.32±0.04 m/s (ANOVA, P=0.036), and PWVA 3.07±0.03 versus 3.15±0.03 m/s (ANOVA, P=0.045). The effects of genotype were independent of age, gender, smoking, mean arterial pressure, body mass index, family history of hypertension, and activity scores. We report an association between the COL1A1 gene polymorphism and arterial compliance. Alterations in arterial collagen type 1A deposition may play a role in the regulation of arterial compliance
Resumo:
A melphalan-resistant variant (Roswell Park Memorial Institute (RPMI)-2650M1) and a paclitaxel-resistant variant (RPMI-1650Tx) of the drug-sensitive human nasal carcinoma cell line, RPMI-2650. were established. The multidrug resistance (MDR) phenotype in the RPMI-2650Tx appeared to be P-glycoprotein (PgP)-mediated. Overexpression of multidrug resistant protein (MRP) family members was observed in the RPMI-2650M1 cells, which were also much more invasive in vitro than the parental cell line or the paclitaxel-resistant variant. Increased expression of alpha (2), alpha (5), alpha (6), beta (1) and beta (4) integrin subunits, decreased expression of alpha (4) integrin subunit, stronger adhesion to collagen type IV, laminin, fibronectin and matrigel, increased expression of MMP-2 and MMP-9 and significant motility compared with the parental cells were observed, along with a high invasiveness in the RPMI-7650M1 cells. Decreased expression of the alpha (2) integrin subunit, decreased attachment to collagen type IV, absence of cytokeratin 18 expression, no detectable expression of gelatin-degrading proteases and poor motility may be associated with the non-invasiveness of the RPMI-2650Tx variant. These results suggest that melphalan exposure can result in not only a MDR phenotype. but could also make cancer cells more invasive, whereas paclitaxel exposure resulted in MDR without increasing the in vitro invasiveness in the RPMI-2650 cells. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The detection of illicit growth promoter use during meat production within the European Union is reliant on residue testing which is a limiting factor on the number of animals which can be tested and consequently compromises the efficacy of testing procedures. The present study examined a novel detection strategy based on the profiling of plasma component concentrations in response to growth promoter administrations. Calves subjected to nortestosterone decanoate, 17 beta-oestradiol benzoate and dexamethasone were found to have altered urea, aminoterminal propeptide of type III procollagen and sex hormone binding globulin profiles in response to treatments. These findings demonstrate the potential of using the identification of perturbed profiles within a panel of biomarkers which cover a spectrum of biological activity to reveal growth promoter abuse.
Resumo:
BACKGROUND: Although microaneurysms are a clinicopathological hallmark of diabetic retinopathy, there have been few ultrastructural studies of these important lesions. As a result, knowledge of the mechanisms involved in the pathogenesis of microaneurysms remains fragmentary. This study provides histological and ultrastructural evidence of various stages in microaneurysm formation within the retinal vasculature. METHODS: The eyes of three type II diabetic patients, obtained within 24 hours of death, were studied by the trypsin digest technique. Eyes from two further type II diabetics were fixed in 2.5% glutaraldehyde within 12 hours of death and processed for electron microscopy. RESULTS: In the trypsin digest preparations, small saccular and fusiform microaneurysms were observed in the peripheral retinal. In the central retina, the microaneurysms ranged in morphology from thin walled, cellular forms to dense, acellular, hyalinised forms. Ultrastructurally, four distinct groups of microaneurysm were observed. Type I showed an extensive accumulation of polymorphonuclear cells into the lumen. The endothelium remained intact, although pericytes were invariably absent. Type II microaneurysms were typified by large numbers of red blood cells (RBCs) in the lumen. Endothelial cells and pericytes were completely absent. The type III microaneurysm was also non-perfused and contained aggregates of irregularly shaped RBC profiles and RBC breakdown products. Recanalisation by new vessels into the occluded lumen was observed in one microaneurysm. Type IV microaneurysms were almost or completely sclerosed, with extensive fibrosis and lipid infiltration into the lumen and basement membrane wall. CONCLUSION: This investigation describes several distinctive stages in the formation of microaneurysms during diabetic retinopathy. With reference to the pathogenesis of retinal microaneurysms, the interaction of various cell types is discussed and the significance of vascular cell death and localised hypertensive events highlighted.
Resumo:
The critical involvement of TGF-beta 1 (transforming growth factor-beta 1) in DN (diabetic nephropathy) is well established. However, the role of CTGF (connective tissue growth factor) in regulating the complex interplay of TGF-beta 1 signalling networks is poorly understood. The purpose of the present study was to investigate co-operative signalling between CTGF and TGF-beta 1 and its physiological significance. CTGF was determined to bind directly to the T beta RIII (TGF-beta type III receptor) and antagonize TGF-beta 1-induced Smad phosphorylation and transcriptional responses via its N-terminal half. Furthermore, TGF-beta 1 binding to its receptor was inhibited by CTGF. A consequent shift towards non-canonical TGF-beta 1 signalling and expression of a unique profile of differentially regulated genes was observed in CTGF/TGF-beta 1-treated mesangial cells. Decreased levels of Smad2/3 phosphorylation were evident in STZ (streptozotocin)-induced diabetic mice, concomitant with increased levels of CTGF Knockdown of T beta RIII restored TGF-beta 1-mediated Smad signalling and cell contractility, suggesting that T beta RIII is key for CTGF-mediated regulation of TGF-beta 1. Comparison of gene expression profiles from CTGF/TGF-beta 1-treated mesangial cells and human renal biopsy material with histological diagnosis of DN revealed significant correlation among gene clusters. In summary, mesangial cell responses to TGF-beta 1 are regulated by cross-talk with CTGF, emphasizing the potential utility of targeting CTGF in DN.
Resumo:
Type III galactosemia results from reduced activity of the enzyme UDP-galactose 4'-epimerase. Five disease-associated alleles (G90E, V94M, D103G, N34S and L183P) and three artificial alleles (Y105C, N268D, and M284K) were tested for their ability to alleviate galactose-induced growth arrest in a Saccharomyces cerevisiae strain which lacks endogenous UDP-galactose 4'-epimerase. For all of these alleles, except M284K, the ability to alleviate galactose sensitivity was correlated with the UDP-galactose 4'-epimerase activity detected in cell extracts. The M284K allele, however, was able to substantially alleviate galactose sensitivity, but demonstrated near-zero activity in cell extracts. Recombinant expression of the corresponding protein in Escherichia coil resulted in a protein with reduced enzymatic activity and reduced stability towards denaturants in vitro. This lack of stability may result from the introduction of an unpaired positive charge into a bundle of three alpha-helices near the surface of the protein. The disparities between the in vivo and in vitro data for M284K-hGALE further suggest that there are additional, stabilising factors present in the cell. Taken together, these results reinforce the need for care in the interpretation of in vitro, enzymatic diagnostic tests for type III galactosemia. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.
Resumo:
Studies of trait-mediated indirect interactions (TMIIs) typically focus on effects higher predators have on per capita consumption by intermediate consumers of a third, basal prey resource. TMIIs are usually evidenced by changes in feeding rates of intermediate consumers and/or differences in densities of this third species. However, understanding and predicting effects of TMIIs on population stability of such basal species requires examination of the type and magnitude of the functional responses exhibited towards them. Here, in a marine intertidal system consisting of a higher-order fish predator, the shanny Lipophrys pholis, an intermediate predator, the amphipod Echinogammarus marinus, and a basal prey resource, the isopod Jaera nordmanni, we detected TMIIs, demonstrating the importance of habitat complexity in such interactions, by deriving functional responses and exploring consequences for prey population stability. Echinogammarus marinus reacted to fish predator diet cues by reducing activity, a typical anti-predator response, but did not alter habitat use. Basal prey, Jaera nordmanni, did not respond to fish diet cues with respect to activity, distribution or aggregation behaviour. Echinogammarus marinus exhibited type II functional responses towards J. nordmanni in simple habitat, but type III functional responses in complex habitat. However, while predator cue decreased the magnitude of the type II functional response in simple habitat, it increased the magnitude of the type III functional response in complex habitat. These findings indicate that, in simple habitats, TMIIs may drive down consumption rates within type II responses, however, this interaction may remain de-stabilising for prey populations. Conversely, in complex habitats, TMIIs may strengthen regulatory influences of intermediate consumers on prey populations, whilst potentially maintaining prey population stability. We thus highlight that TMIIs can have unexpected and complex ramifications throughout communities, but can be unravelled by considering effects on intermediate predator functional response types and magnitudes.
Resumo:
Strains of the Burkholderia cepacia complex (Bcc) are opportunistic bacteria that can cause life-threatening infections in patients with cystic fibrosis and chronic granulomatous disease. Previous work has shown that Bcc isolates can persist in membrane-bound vacuoles within amoeba and macrophages without bacterial replication, but the detailed mechanism of bacterial persistence is unknown. In this study, we have investigated the survival of the Burkholderia cenocepacia strain J2315 within RAW264.7 murine macrophages. Strain J2315 is a prototypic isolate of the widespread and transmissible ET12 clone. Unlike heat-inactivated bacteria, which reach lysosomes shortly after internalization, vacuoles containing live B. cenocepacia J2315 accumulate the late endosome/lysosome marker LAMP-1 and start fusing with lysosomal compartments only after 6 h post internalization. Using fluorescent fluid-phase probes, we also demonstrated that B. cenocepacia-containing vacuoles continued to interact with newly formed endosomes, and maintained a luminal pH of 6.4 +/- 0.12. In contrast, vacuoles containing heat-inactivated bacteria had an average pH of 4.8 +/- 0.03 and rapidly merged with lysosomes. Additional experiments using concanamycin A, a specific inhibitor of the vacuolar H+-ATPase, revealed that vacuoles containing live bacteria did not exclude the H+-ATPase. This mode of bacterial survival did not require type III secretion, as no differences were found between wild type and a type III secretion mutant strain. Collectively, our results suggest that intracellular B. cenocepacia cause a delay in the maturation of the phagosome, which may contribute to facilitate bacterial escape from the microbicidal activities of the host cell.
Resumo:
The Gram-positive bacterium Propionibacterium acnes is a member of the normal human skin microbiota and is associated with various infections and clinical conditions. There is tentative evidence to suggest that certain lineages may be associated with disease and others with health. We recently described a multilocus sequence typing scheme (MLST) for P. acnes based on seven housekeeping genes (http://pubmlst.org/pacnes). We now describe an expanded eight gene version based on six housekeeping genes and two ‘putative virulence’ genes (eMLST) that provides improved high resolution
typing (91eSTs from 285 isolates), and generates phylogenies congruent with those based on whole genome analysis. When compared with the nine gene MLST scheme developed at the University of Bath, UK, and utilised by researchers at Aarhus University, Denmark, the eMLST method offers greater resolution. Using the scheme, we examined 208 isolates from disparate clinical sources, and 77 isolates from healthy skin. Acne was predominately associated with type IA1 clonal complexes CC1, CC3 and CC4; with eST1 and eST3 lineages being highly represented. In contrast, type IA2 strains were recovered at a rate similar to type IB and II organisms. Ophthalmic infections were predominately associated with type IA1 and IA2 strains, while type IB and II were more frequently recovered from soft tissue and retrieved medical devices. Strains with rRNA mutations conferring resistance to antibiotics used in acne treatment were dominated by eST3, with some evidence for intercontinental spread. In contrast, despite its high association with acne, only a small number of resistant CC1 eSTs were identified. A number of eSTs were only recovered from healthy skin, particularly eSTs representing CC72 (type II) and CC77 (type III). Collectively our data lends support to the view that pathogenic versus truly commensal lineages of P. acnes may exist. This is likely to have important therapeutic and diagnostic implications.
Resumo:
Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. Although much attention has been given to the biological effects of its lipid A portion, a great body of evidence indicates that its O chain polysaccharide (O antigen) portion plays an important role in the bacterium-host interplay. In this work we have studied in-depth the role of the O antigen in Yersinia enterocolitica serotype O:8 pathogenesis. We made a detailed virulence analysis of three mutants having different O antigen phenotypes: (i) LPS with no O antigen (rough mutant); (ii) LPS with one O unit (semirough mutant) and (iii) LPS with random distribution of O antigen chain lengths. We demonstrated that these LPS O antigen mutants were attenuated in virulence regardless of the infection route used. Co-infection experiments revealed that the rough and semirough mutants were severely impaired in their ability to colonize the Peyer's patches and in contrast to the wild-type strain they did not colonize spleen and liver. The mutant with random distribution of O antigen chain lengths, however, survived better but started to be cleared from mouse organs after 8 days. As an explanation to this attenuation we present here evidence that other Yersinia virulence factors depend on the presence of O antigen for their proper function and/or expression. We demonstrated that in the rough mutant: (i) the YadA function but not its expression was altered; (ii) Ail was not expressed and (iii) inv expression was downregulated. On the other hand, expression of flhDC, the flagellar master regulatory operon, was upregulated in this mutant with a concomitant increase in the production of flagellins. Finally, expression of yplA, encoding for the Yersinia phospholipase A, was also upregulated accompanied by an increased flagellar type III secretion system mediated secretion of YplA to culture medium. Together these findings suggest that the absence of O antigen in the outer membrane of Yersinia either directly or indirectly, for example through a cellular or membrane stress, could act as a regulatory signal.