891 resultados para Cold-adapted yeast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO(2) concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO(2) and identify the bZIP transcription factor Rca1p as the first CO(2) regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO(2) build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO(2) sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO(2) availability in environments as diverse as the phagosome, yeast communities or liquid culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in different physiological processes. Their molecular mode of action, however, is poorly understood. Saccharomyces cerevisiae expresses three members of this superfamily, pathogen-related yeast (Pry)1, -2, and -3. We have recently shown that Pry function is required for the secretion of cholesteryl acetate and that Pry proteins bind cholesterol and cholesteryl acetate, suggesting that CAP superfamily members may generally act to bind sterols or related small hydrophobic compounds. Here, we analyzed the mode of sterol binding by Pry1. Computational modeling indicates that ligand binding could occur through displacement of a relatively poorly conserved flexible loop, which in some CAP family members displays homology to the caveolin-binding motif. Point mutations within this motif abrogated export of cholesteryl acetate but did not affect binding of cholesterol. Mutations of residues located outside the caveolin-binding motif, or mutations in highly conserved putative catalytic residues had no effect on export of cholesteryl acetate or on lipid binding. These results indicate that the caveolin-binding motif of Pry1, and possibly of other CAP family members, is crucial for selective lipid binding and that lipid binding may occur through displacement of the loop containing this motif.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic gene expression depends on a complex interplay between the transcriptional apparatus and chromatin structure. We report here a yeast model system for investigating the functional interaction between the human estrogen receptor (hER) and CTF1, a member of the CTF/NFI transcription factor family. We show that a CTF1-fusion protein and the hER transactivate a synthetic promoter in yeast in a synergistic manner. This interaction requires the proline-rich transactivation domain of CTF1. When the natural estrogen-dependent vitellogenin B1 promoter is tested in yeast, CTF1 and CTF1-fusion proteins are unable to activate transcription, and no synergy is observed between hER, which activates the B1 promoter, and these factors. Chromatin structure analysis on this promoter reveals positioned nucleosomes at -430 to -270 (+/-20 bp) and at -270 to - 100 (+/-20 bp) relative to the start site of transcription. The positions of the nucleosomes remain unchanged upon hormone-dependent transcriptional activation of the promoter, and the more proximal nucleosome appears to mask the CTF/NFI site located at - 101 to -114. We conclude that a functional interaction of hER with the estrogen response element located upstream of a basal promoter occurs in yeast despite the nucleosomal organization of this promoter, whereas the interaction of CTF1 with its target site is apparently precluded by a nucleosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinesins and myosins transport cargos to specific locations along microtubules and actin filaments, respectively. The relative contribution of the two transport systems for cell polarization varies extensively in different cell types, with some cells relying exclusively on actin-based transport while others mainly use microtubules. Using fission yeast, we asked whether one transport system can substitute for the other. In this organism, microtubules and actin cables both contribute to polarized growth by transporting cargos to cell poles, but with distinct roles: microtubules transport landmarks to label cell poles for growth and actin assembly but do not directly contribute to the growth process [1]. Actin cables serve as tracks for myosin V delivery of growth vesicles to cell poles [2-4]. We engineered a chimera between the motor domain of the kinesin 7 Tea2 and the globular tail of the myosin V Myo52, which we show transports Ypt3, a myosin cargo receptor, to cell poles along microtubules. Remarkably, this chimera restores polarized growth and viability to cells lacking actin cables. It also bypasses the normal microtubule-dependent marking of cell poles for polarized growth, but not for other functions. Thus, a synthetic motor protein successfully redirects cargos along a distinct cytoskeletal route.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many organelles exist in an equilibrium of fragmentation into smaller units and fusion into larger structures, which is coordinated with cell division, the increase in cell mass, and envi¬ronmental conditions. In yeast cells, organelle homeostasis can be studied using the yeast vacuole (lysosome) as a model system. Yeast vacuoles are the main compartment for degrada¬tion of cellular proteins and storage of nutrients, ions and metabolites. Fission and fusion of vacuoles can be induced by hyper- and hypotonic shock in vivo, respectively, and have also been reconstituted in vitro using isolated vacuoles. The conserved serine/threonine kinase TOR (target of rapamycin) is a central nutrient sensor and regulates cell growth and metabolism. In yeast, there are two TOR proteins, Torlp and Tor2p, which are part of larger protein complexes, TORCI and TORC2. Only TORCI is rapamycin-sensitive. Disregulation of TOR signaling is linked to a multitude of diseases in humans, e.g. cancer, neurodegenerative diseases and metabolic syndrome. It has been shown that TORCI localizes to the vacuole membrane, and recent findings of our laboratory demonstrated that TORCI positively regulates vacuole fragmentation. This suggests that the fragmentation machinery should contain target proteins phosphorylated by TORCI. I explored the rapamycin-and fission-dependent vacuolar phosphoproteome during frag¬mentation, using a label-free mass-spectrometry approach. I identified many vacuolar factors whose phosphorylation was downregulated in a TORCI- and fission-dependent manner. Among them were known protein complexes that are functionally linked to fission or fusion, like the HOPS, VTC and FAB1 complexes. Hence, TORCI-dependent phosphorylations might positively regulate vacuole fission. Several candidates were chosen for detailed microscopic analysis of in vivo vacuole frag-mentation, using deletion mutants. I was able to identify novel factors not previously linked to fission phenotypes, e.g. the SEA complex, Pib2, and several vacuolar amino acid transporters. Transport of neutral and basic amino acids across the membrane seems to control vacuole fission, possibly via TORCI. I analyzed vacuolar fluxes of amino acids in wildtype yeast cells and found evidence for a selective vacuolar export of basic amino acids upon hyperosmotic stress. This leads me to propose a model where vacuolar export of amino acids is necessary to reshape the organelle under salt stress. - Le nombre et la taille de certaines organelles peut être déterminé par un équilibre entre la fragmentation qui produit des unités plus petites et la fusion qui génère des structures plus larges. Cet équilibre est coordonné avec la division cellulaire, l'augmentation de la masse cellulaire, et les conditions environnementales. Dans des cellules de levure, l'homéostasie des organelles peut être étudié à l'aide d'un système modèle, la vacuole de levure (lysosome). Les vacuoles constituent le principal compartiment de la dégradation des protéines et de stockage des nutriments, des ions et des métabolites. La fragmentation et la fusion des vacuoles peuvent être respectivement induites par un traitement hyper- ou hypo-tonique dans les cellules vivantes. Ces processus ont également été reconstitués in vitro en utilisant des vacuoles isolées. La sérine/thréonine kinase conservée TOR (target of rapamycin/cible de la rapamycine) est un senseur de nutriments majeur qui régule la croissance cellulaire et le métabolisme. Chez la levure, il existe deux protéines TOR, Torlp et Tor2p, qui sont les constituants de plus grands complexes de protéines, TORCI et TORC2. TORCI est spécifiquement inhibé par la rapamycine. Une dysrégulation de la signalisation de TOR est liée à une multitude de maladies chez l'homme comme le cancer, les maladies neurodégénératives et le syndrome métabolique. Il a été montré que TORCI se localise à la membrane vacuolaire et les découvertes récentes de notre laboratoire ont montré que TORCI régule positivement la fragmentation de la vacuole. Ceci suggère que le mécanisme de fragmentation doit être contrôlé par la phosphorylation de certaines protéines cibles de TORCI. J'ai exploré le phosphoprotéome vacuolaire lors de la fragmentation, en présence ou absence de rapamycine et dans des conditions provoquant la fragmentation des organelles. La méthode choisie pour réaliser la première partie de ce projet a été la spectrométrie de masse différentielle sans marquage. J'ai ainsi identifié plusieurs facteurs vacuolaires dont la phosphorylation est régulée d'une manière dépendante de TORCI et de la fragmentation. Parmi ces facteurs, des complexes protéiques connus qui sont fonctionnellement liées à fragmentation ou la fusion, comme les complexes HOPS, VTC et FAB1 ont été mis en évidence. Par conséquent, la phosphorylation dépendante de TORCI peut réguler positivement la fragmentation des vacuoles. Plusieurs candidats ont été choisis pour une analyse microscopique détaillée de la fragmentation vacuolaire in vivo en utilisant des mutants de délétion. J'ai été en mesure d'identifier de nouveaux facteurs qui n'avaient pas été encore associés à des phénotypes de fragmentation tels que les complexes SEA, Pib2p, ainsi que plusieurs transporteurs vacuolaires d'acides aminés. Le transport des acides aminés à travers la membrane semble contrôler la fragmentation de la vacuole. Puisque ces transporteurs sont phosphorylés par TORCI, ces résultats semblent confirmer la

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnaporthe oryzae causes rice blast, the most serious foliar fungal disease of cultivated rice (Oryza sativa). During hemibiotrophic leaf infection, the pathogen simultaneously combines biotrophic and necrotrophic growth. Here, we provide cytological and molecular evidence that, in contrast to leaf tissue infection, the fungus adopts a uniquely biotrophic infection strategy in roots for a prolonged period and spreads without causing a loss of host cell viability. Consistent with a biotrophic lifestyle, intracellularly growing hyphae of M. oryzae are surrounded by a plant-derived membrane. Global, temporal gene expression analysis used to monitor rice responses to progressive root infection revealed a rapid but transient induction of basal defense-related gene transcripts, indicating perception of the pathogen by the rice root. Early defense gene induction was followed by suppression at the onset of intracellular fungal growth, consistent with the biotrophic nature of root invasion. By contrast, during foliar infection, the vast majority of these transcripts continued to accumulate or increased in abundance. Furthermore, induction of necrotrophy-associated genes during early tissue penetration, previously observed in infected leaves, was not seen in roots. Collectively, our results not only report a global characterization of transcriptional root responses to a biotrophic fungal pathogen but also provide initial evidence for tissue-adapted fungal infection strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were to determine whether responses in myocardial blood flow (MBF) to the cold pressor testing (CPT) method noninvasively with PET correlate with an established and validated index of flow-dependent coronary vasomotion on quantitative angiography. METHODS: Fifty-six patients (57 +/- 6 y; 16 with hypertension, 10 with hypercholesterolemia, 8 smokers, and 22 without coronary risk factors) with normal coronary angiograms were studied. Biplanar end-diastolic images of a selected proximal segment of the left anterior descending artery (LAD) (n = 27) or left circumflex artery (LCx) (n = 29) were evaluated with quantitative coronary angiography in order to determine the CPT-induced changes of epicardial luminal area (LA, mm(2)). Within 20 d of coronary angiography, MBF in the LAD, LCx, and right coronary artery territory was measured with (13)N-ammonia and PET at baseline and during CPT. RESULTS: CPT induced on both study days comparable percent changes in the rate x pressure product (%DeltaRPP, 37% +/- 13% and 40% +/- 17%; P = not significant [NS]). For the entire study group, the epicardial LA decreased from 5.07 +/- 1.02 to 4.88 +/- 1.04 mm(2) (DeltaLA, -0.20 +/- 0.89 mm(2)) or by -2.19% +/- 17%, while MBF in the corresponding epicardial vessel segment increased from 0.76 +/- 0.16 to 1.03 +/- 0.33 mL x min(-1) x g(-1) (DeltaMBF, 0.27 +/- 0.25 mL x min(-1) x g(-1)) or 36% +/- 31% (P <or= 0.0001). However, in normal controls without coronary risk factors (n = 22), the epicardial LA increased from 5.01 +/- 1.07 to 5.88 +/- 0.89 mm(2) (19.06% +/- 8.9%) and MBF increased from 0.77 +/- 0.16 to 1.34 +/- 0.34 mL x min(-1) x g(-1) (74.08% +/- 23.5%) during CPT, whereas patients with coronary risk factors (n = 34) revealed a decrease of epicardial LA from 5.13 +/- 1.48 to 4.24 +/- 1.12 mm(2) (-15.94% +/- 12.2%) and a diminished MBF increase (from 0.76 +/- 0.20 to 0.83 +/- 0.25 mL x min(-1) x g(-1) or 10.91% +/- 19.8%) as compared with controls (P < 0.0001, respectively), despite comparable changes in the RPP (P = NS). In addition, there was a significant correlation (r = 0.87; P <or= 0.0001) between CPT-related percent changes in LA on quantitative angiography and in MBF as measured with PET. CONCLUSION: The observed close correlation between an angiographically established parameter of flow-dependent and, most likely, endothelium-mediated coronary vasomotion and PET-measured MBF further supports the validity and value of MBF responses to CPT as a noninvasively available index of coronary circulatory function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Despite its pervasiveness, the genetic basis of adaptation resulting in variation directly or indirectly related to temperature (climatic) gradients is poorly understood. By using 3-fold replicated laboratory thermal stocks covering much of the physiologically tolerable temperature range for the temperate (i.e., cold tolerant) species Drosophila subobscura we have assessed whole-genome transcriptional responses after three years of thermal adaptation, when the populations had already diverged for inversion frequencies, pre-adult life history components, and morphological traits. Total mRNA from each population was compared to a reference pool mRNA in a standard, highly replicated two-colour competitive hybridization experiment using cDNA microarrays.Results: A total of 306 (6.6%) cDNA clones were identified as 'differentially expressed' (following a false discovery rate correction) after contrasting the two furthest apart thermal selection regimes (i.e., 13°C vs . 22°C), also including four previously reported candidate genes for thermotolerance in Drosophila (Hsp26, Hsp68, Fst, and Treh). On the other hand, correlated patterns of gene expression were similar in cold- and warm-adapted populations. Analysis of functional categories defined by the Gene Ontology project point to an overrepresentation of genes involved in carbohydrate metabolism, nucleic acids metabolism and regulation of transcription among other categories. Although the location of differently expressed genes was approximately at random with respect to chromosomes, a physical mapping of 88 probes to the polytene chromosomes of D. subobscura has shown that a larger than expected number mapped inside inverted chromosomal segments.Conclusion: Our data suggest that a sizeable number of genes appear to be involved in thermal adaptation in Drosophila, with a substantial fraction implicated in metabolism. This apparently illustrates the formidable challenge to understanding the adaptive evolution of complex trait variation. Furthermore, some clustering of genes within inverted chromosomal sections was detected. Disentangling the effects of inversions will be obviously required in any future approach if we want to identify the relevant candidate genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control of blood pressure in men and women differs due to different physiological pathways. Moreover, conditions increasing the risk of hypertension, such as pre-eclampsia, exposure to oral contraceptives are specific to women. Men have a higher blood pressure than women from pubertal growth to advanced age. However, the definition of hypertension (blood pressure--140/90 mmHg) is the same for adult men and women. The management of hypertension should be based not only on the level of blood pressure, but also on the global cardiovascular risk. Sex is included in the global evaluation of the cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rats chronically cannulated in the carotid artery and the muscular branch of the femoral vein were subjected to a cold (4 °C) environment for up to 2 h. The changes in blood flow (measured with 46Sc microspheres) and arterio-venous differences in the concentrations of glucose, lactate, triacylglycerols and amino acids allowed the estimation of substrate (and energy) balances across the hindleg. Mean glucose uptake was 0.28mmol min21, mean lactate release was 0.33mmol min21 and the free fatty acid basal release of 0.31mmol min21 was practically zero upon exposure to the cold; the initial uptake of triacylglycerols gave place to a massive release following exposure. The measurement of PO·, PCO· and pH also allowed the estimation of oxygen, CO2 and bicarbonate balances and respiratory quotient changes across the hindleg. The contribution of amino acids to the energy balance of the hindleg was assumed to be low. These data were used to determine the sources of energy used to maintain muscle shivering with time. Three distinct phases were observed in hindleg substrate utilization. (1) The onset of shivering, with the use of glucose/glycogen and an increase in lactate efflux. Lipid oxidation was practically zero (respiratory quotient near 1), but the uptake of triacylglycerols from the blood remained unchanged. (2) A substrate-energy shift, with drastically decreased use of glucose/glycogen, and of lactate efflux; utilization of triacylglycerol as practically the sole source of energy (respiratory quotient approximately 0.7); decreasing uptake of triacylglycerol and increased tissue lipid mobilization. (3) The onset of a new heat-homeostasis setting for prolonged cold-exposure, with maintenance of muscle energy and heat production based on triacylglycerol utilization and efflux from the hindleg (muscle plus skin and subcutaneous adipose masses) contributing energy to help sustain heat production by the core organs and surrounding brown adipose tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Acetate brain metabolism has the particularity to occur specifically in glial cells. Labeling studies, using acetate labeled either with 13C (NMR) or 11C (PET), are governed by the same biochemical reactions and thus follow the same mathematical principles. In this study, the objective was to adapt an NMR acetate brain metabolism model to analyse [1-11C]acetate infusion in rats. Methods: Brain acetate infusion experiments were modeled using a two-compartment model approach used in NMR.1-3 The [1-11C]acetate labeling study was done using a beta scintillator.4 The measured radioactive signal represents the time evolution of the sum of all labeled metabolites in the brain. Using a coincidence counter in parallel, an arterial input curve was measured. The 11C at position C-1 of acetate is metabolized in the first turn of the TCA cycle to the position 5 of glutamate (Figure 1A). Through the neurotransmission process, it is further transported to the position 5 of glutamine and the position 5 of neuronal glutamate. After the second turn of the TCA cycle, tracer from [1-11C]acetate (and also a part from glial [5-11C]glutamate) is transferred to glial [1-11C]glutamate and further to [1-11C]glutamine and neuronal glutamate through the neurotransmission cycle. Brain poster session: oxidative mechanisms S460 Journal of Cerebral Blood Flow & Metabolism (2009) 29, S455-S466 Results: The standard acetate two-pool PET model describes the system by a plasma pool and a tissue pool linked by rate constants. Experimental data are not fully described with only one tissue compartment (Figure 1B). The modified NMR model was fitted successfully to tissue time-activity curves from 6 single animals, by varying the glial mitochondrial fluxes and the neurotransmission flux Vnt. A glial composite rate constant Kgtg=Vgtg/[Ace]plasma was extracted. Considering an average acetate concentration in plasma of 1 mmol/g5 and the negligible additional amount injected, we found an average Vgtg = 0.08±0.02 (n = 6), in agreement with previous NMR measurements.1 The tissue time-activity curve is dominated by glial glutamate and later by glutamine (Figure 1B). Labeling of neuronal pools has a low influence, at least for the 20 mins of beta-probe acquisition. Based on the high diffusivity of CO2 across the blood-brain barrier; 11CO2 is not predominant in the total tissue curve, even if the brain CO2 pool is big compared with other metabolites, due to its strong dilution through unlabeled CO2 from neuronal metabolism and diffusion from plasma. Conclusion: The two-compartment model presented here is also able to fit data of positron emission experiments and to extract specific glial metabolic fluxes. 11C-labeled acetate presents an alternative for faster measurements of glial oxidative metabolism compared to NMR, potentially applicable to human PET imaging. However, to quantify the relative value of the TCA cycle flux compared to the transmitochondrial flux, the chemical sensitivity of NMR is required. PET and NMR are thus complementary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In yeast, microtubules are dynamic filaments necessary for spindle and nucleus positioning, as well as for proper chromosome segregation. We identify a function for the yeast gene BER1 (Benomyl REsistant 1) in microtubule stability. BER1 belongs to an evolutionary conserved gene family whose founding member Sensitivity to Red light Reduced is involved in red-light perception and circadian rhythms in Arabidopsis. Here, we present data showing that the ber1Delta mutant is affected in microtubule stability, particularly in presence of microtubule-depolymerising drugs. The pattern of synthetic lethal interactions obtained with the ber1Delta mutant suggests that Ber1 may function in N-terminal protein acetylation. Our work thus suggests that microtubule stability might be regulated through this post-translational modification on yet-to-be determined proteins

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Pelto- ja puutarhakasvien kylmänkestävyystutkimus Suomessa