927 resultados para Cold ironing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is currently a strong interest in mirrorless lasing systems(1), in which the electromagnetic feedback is provided either by disorder (multiple scattering in the gain medium) or by order (multiple Bragg reflection). These mechanisms correspond, respectively, to random lasers(2) and photonic crystal lasers(3). The crossover regime between order and disorder, or correlated disorder, has also been investigated with some success(4-6). Here, we report one-dimensional photonic-crystal lasing (that is, distributed feedback lasing(7,8)) with a cold atom cloud that simultaneously provides both gain and feedback. The atoms are trapped in a one-dimensional lattice, producing a density modulation that creates a strong Bragg reflection with a small angle of incidence. Pumping the atoms with auxiliary beams induces four-wave mixing, which provides parametric gain. The combination of both ingredients generates a mirrorless parametric oscillation with a conical output emission, the apex angle of which is tunable with the lattice periodicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-photon cooperative absorption is common in solid-state physics. In a sample of trapped cold atoms, this effect may open up new possibilities for the study of nonlinear effects. The experiment described herein starts with two colliding Na atoms in the S hyperfine ground state. The pair absorb two photons, resulting in both a P-1/2 and a P-3/2 atom. This excitation is observed by ionization using an external light source. A simple model that considers only dipole-dipole interactions between the atoms allows us to understand the basic features observed in the experimental results. Both the pair of generated atoms and the photons originating from their decay are correlated and may have interesting applications that remain to be explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 7.4 mm thick strip of 3003 aluminum alloy produced by the industrial twin-roll casting (TRC) process was homogenized at 500 °C for 12 hours, after which it was cold rolled in two conditions: 1) to reduce the strip's thickness by 67%, and 2) to reduce it by 91%. The alloy was annealed at 400 °C for 1 hour in both conditions. The results revealed that a rotated cube texture, the {001}<110> component, predominated in the as-cast condition and was transformed into brass, copper and S type textures during the cold rolling process. There was practically no difference between the deformation textures at the two thickness reductions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polythermal glaciers, i.e. glaciers with a combination of ice at and below the freezing point, are widespread in arctic and subarctic environments. The polythermal structure has major implications for glacier hydrology, ice flow and glacial erosion. However, the interplay of factors governing its spatial and temporal variations such as net mass balance, ice advection and water content in the ice is poorly investigated and as yet not fully understood. This study deals with a thorough investigation of the polythermal regime on Storglaciären, northern Sweden, a small valley glacier with a cold surface layer in the ablation area. Extensive field work was performed including mapping of the cold surface layer using ground-penetrating radar, ice temperature measurements, mass balance and ice velocity measurements. Analyses of these data combined with numerical modelling were used specifically to investigate the spatial and temporal variability of the cold surface layer, the spatial distribution of the water content just below the cold surface layer transition, the effect of radar frequency on the detection of the surface layer, and the sensitivity of the cold surface layer to changes in forcing. A comparison between direct temperature measurements in boreholes and ground-penetrating surveys shows that the radar-inferred cold-temperate transition depth is within ±1 m from the melting point of ice at frequencies above ~300 MHz. At frequencies below ~155 MHz, the accuracy degrades because of reduced scattering efficiency that occurs when the scatterers become much smaller compared to the wavelength. The mapped spatial pattern of the englacial cold-temperate transition boundary is complex. This pattern reflects the observed spatial variation in net loss of ice at the surface by ablation and vertical advection of ice, which is suggested to provide the predominant forcing of the cold surface layer thickness pattern. This is further supported by thermomechanical modeling of the cold surface layer, which indicates high sensitivity of the cold surface layer thickness to changes in vertical advection rates. The water content is the least investigated quantity that is relevant for the thermal regime of glaciers, but also the most difficult to assess. Spatial variability of absolute water content in the temperate ice immediately below the cold surface layer on Storglaciären was determined by combining relative estimates of water content from ground-penetrating radar data with absolute determination from temperature measurements and the thermal boundary condition at the freezing front. These measurements indicate large-scale spatial variability in the water content, which seems to arise from variations in entrapment of water at the firn-ice transition. However, this variability cannot alone explain the spatial pattern in the thermal regime on Storglaciären. Repeated surveys of the cold surface layer show a 22% average thinning of the cold surface layer on Storglaciären between 1989 and 2001. Transient thermomechanical modeling results suggest that the cold surface layer adapts to new equilibrium conditions in only a few decades after a perturbation in the forcing is introduced. An increased winter air temperature since mid-1980s seems to be the cause of the observed thinning of the cold surface layer. Over the last decades, mass balance measurements indicate that the glacier has been close to a steady state. The quasi-steady state situation is also reflected in the vertical advection, which shows no significant changes during the last decades. Increased winter temperatures at the ice surface would result in a slow-down of the formation of cold ice at the base of the cold surface layer and lead to a larger imbalance between net loss of ice at the surface and freezing of temperate ice at the cold-temperate transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The main types of submarine geological emissions are classified as cold seeps (hydrocarbons and brines) and hot vents. These processes result in the emission of geological fluids: brine, gases (mainly hydro-carbons), sediments and rocks. Submarine emissions are associated with an intensive geological, geo-chemical, thermal and biological activity (Judd and Hovland, 2007), and constitute a key process in the dynamics of the global cycles of the planet Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] This article describes a photocatalytic nanostructured anatase coating deposited by cold gas spray (CGS) supported on titanium sub-oxide (TiO22x) coatings obtained by atmospheric plasma spray (APS) onto stainless steel cylinders. The photocatalytic coating was homogeneous and preserved the composition and nanostructure of the starting powder. The inner titanium sub-oxide coating favored the deposition of anatase particles in the solid state. Agglomerated nano-TiO2 particles fragmented when impacting onto the hard surface of the APS TiO22x bond coat. The rough surface provided by APS provided an ideal scenario for entrapping the nanostructured particles, which may be adhered onto the bond coat due to chemical bonding; a possible bonding mechanism is described. Photocatalytic experiments showed that CGS nano-TiO2 coating was active for photodegrading phenol and formic acid under aqueous conditions. The results were similar to the performance obtained by competitor technologies and materials such as dip-coating P25 photocatalysts. Disparity in the final performance of the photoactive materials may have been caused by differences in grain size and the crystalline composition of titanium dioxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal infrared (IR, 10.5 – 12.5 m) images from the Meteosat Visible and Infrared Imager (MVIRI) of cold cloud episodes (cloud top brightness temperature < 241 K) are used as a proxy of precipitating clouds to derive a warm season (May-August) climatology of their coherency, duration, span, and speed over Europe and the Mediterranean. The analysis focuses over the 30°-54°N, 15°W-40°E domain in May-August 1996-2005. Harmonic analysis using discrete Fourier transforms is applied together with a statistical analysis and an investigation of the diurnal cycle. This study has the objective to make available a set of results on the propagation dynamics of the cloud systems with the aim of assist numerical modellers in improving summer convection parameterization. The zonal propagation of cold cloud systems is accompanied by a weak meridional component confined to narrow latitude belts. The persistence of cold clouds over the area evidences the role of orography, the Pyrenees, the Alps, the Balkans and Anatolia. A diurnal oscillation is found with a maximum marking the initiation of convection in the lee of the mountains and shifting from about 1400 UTC at 40°E to 1800 UTC at 0°. A moderate eastward propagation of the frequency maximum from all mountain chains across the domain exists and the diurnal maxima are completely suppressed west of 5°W. The mean power spectrum of the cold cloud frequency distribution evidences a period of one day all over Europe disappearing over the ocean (west of 10°W). Other maxima are found in correspondence of 6 to 10 days in the longitudes from 15° W to 0° and indicate the activity of the westerlies with frontal passage over the continent. Longer periods activities (from 15 up to 30 days) were stronger around 10° W and from 5° W to 15° E and are likely related to the Madden Julian Oscillation influence. The maxima of the diurnal signal are in phase with the presence of elevated terrain and with land masses. A median zonal phase speed of 16.1 ms-1 is found for all events ≥ 1000 km and ≥ 20 h and a full set of results divided by years and recurrence categories is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the case of Vietnam and uses the method of process tracing to explore the sources of foreign policy choice and change. Foreign policy is derived from grand strategy, which refers to the full package of a state’s domestic and foreign policies. I argue that a state’s grand strategy results from the interaction of four factors—its society’s historical experience, social motivation, international power, and political contest among domestic groups. Grand strategies emerge as a response to perceived shifts in the balance of international economic, political, and military power. However, this is not to say that international pressures and incentives are translated into foreign policy. Rather, pressures and incentives are given meaning by worldviews, which reflect a society’s historical experiences of its place in the international system at traumatic junctures of its encounter with the outside world. Strategic changes in foreign policy follow what I call the “strategic algorithm,” which incorporates four major mechanisms—balancing against threat, bandwagoning with power, learning, and survival by transformation. This case study generates hypotheses for a theory of strategic choice, a theory of foreign policy transformation, and a theory of grand strategy emergence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent availability of multi-wavelength data revealed the presence of large reservoirs of warm and cold gas and dust in the innermost regions of the majority of massive elliptical galaxies. To prove an internal origin of cold and warm gas, the investigation of the spatially distributed cooling process which occurs because of non-linear density perturbations and subsequent thermal instabilities is of crucial importance. The first goal of this work of thesis is to investigate the internal origin of warm and cold phases. Numerical simulations are the powerful tool of analysis. The way in which a spatially distributed cooling process originates has been examined and the off-centre amount of gas mass which cools when different and differently characterized AGN feedback mechanisms operate has been quantified. This thesis demonstrates that the aforementioned non-linear density perturbations originate and develop from AGN feedback mechanisms in a natural fashion. An internal origin of the warm phase from the once hot gas is shown to be possible. Computed velocity dispersions of ionized and hot gas are similar. The cold gas as well can originate from the cooling process: indeed, it has been estimated that the surrounding stellar radiation, which is one of the most feasible sources of ionization of the warm gas, does not manage to keep ionized all the gas at 10^4 K. Therefore, cooled gas does undergo a further cooling which can lead the warm phase to lower temperatures. However, the gas which has cooled from the hot phase is expected to be dustless; nonetheless, a large fraction of early type galaxies has detectable dust in their cores, both concentrated in filamentary and disky structures and spread over larger regions. Therefore a regularly rotating disk of cold and dusty gas has been included in the simulations. A new quantitative investigation of the spatially distributed cooling process has therefore been essential: the contribution of the included amount of dust which is embedded in the cold gas does have a role in promoting and enhancing the cooling. The fate of dust which was at first embedded in cold gas has been investigated. The role of AGN feedback mechanisms in dragging (if able) cold and dusty gas from the core of massive ellipticals up to large radii has been studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sweet sorghum, a C4 crop of tropical origin, is gaining momentum as a multipurpose feedstock to tackle the growing environmental, food and energy security demands. Under temperate climates sweet sorghum is considered as a potential bioethanol feedstock, however, being a relatively new crop in such areas its physiological and metabolic adaptability has to be evaluated; especially to the more frequent and severe drought spells occurring throughout the growing season and to the cold temperatures during the establishment period of the crop. The objective of this thesis was to evaluate some adaptive photosynthetic traits of sweet sorghum to drought and cold stress, both under field and controlled conditions. To meet such goal, a series of experiments were carried out. A new cold-tolerant sweet sorghum genotype was sown in rhizotrons of 1 m3 in order to evaluate its tolerance to progressive drought until plant death at young and mature stages. Young plants were able to retain high photosynthetic rate for 10 days longer than mature plants. Such response was associated to the efficient PSII down-regulation capacity mediated by light energy dissipation, closure of reaction centers (JIP-test parameters), and accumulation of glucose and sucrose. On the other hand, when sweet sorghum plants went into blooming stage, neither energy dissipation nor sugar accumulation counteracted the negative effect of drought. Two hybrids with contrastable cold tolerance, selected from an early sowing field trial were subjected to chilling temperatures under controlled growth conditions to evaluate in deep their physiological and metabolic cold adaptation mechanisms. The hybrid which poorly performed under field conditions (ICSSH31), showed earlier metabolic changes (Chl a + b, xanthophyll cycle) and greater inhibition of enzymatic activity (Rubisco and PEPcase activity) than the cold tolerant hybrid (Bulldozer). Important insights on the potential adaptability of sweet sorghum to temperate climates are given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die Elektronen in wasserstoff- und lithium-ähnlichen schweren Ionen sind den extrem starken elektrischen und magnetischen Feldern in der Umgebung des Kerns ausgesetzt. Die Laserspektroskopie der Hyperfeinaufspaltung im Grundzustand des Ions erlaubt daher einen sensitiven Test der Quantenelektrodynamik in starken Feldern insbesondere im magnetischen Sektor. Frühere Messungen an wasserstoffähnlichen Systemen die an einer Elektronenstrahl-Ionenfalle (EBIT) und am Experimentierspeicherring (ESR) der GSI Darmstadt durchgeführt wurden, waren in ihrer Genauigkeit durch zu geringe Statistik, einer starken Dopplerverbreiterung und der großen Unsicherheit in der Ionenenergie limitiert. Das ganze Potential des QED-Tests kann nur dann ausgeschöpft werden, wenn es gelingt sowohl wasserstoff- als auch lithium-ähnliche schwere Ionen mit einer um 2-3 Größenordnung gesteigerten Genauigkeit zu spektroskopieren. Um dies zu erreichen, wird gegenwärtig das neue Penningfallensystem SPECTRAP an der GSI aufgebaut und in Betrieb genommen. Es ist speziell für die Laserspektroskopie an gespeicherten hochgeladenen Ionen optimiert und wird in Zukunft von HITRAP mit nierderenergetischen hochgeladenen Ionen versorgt werden.rnrnSPECTRAP ist eine zylindrische Penningfalle mit axialem Zugang für die Injektion von Ionen und die Einkopplung eines Laserstrahls sowie einem radialen optischen Zugang für die Detektion der Fluoreszenz. Um letzteres zu realisieren ist der supraleitende Magnet als Helmholtz-Spulenpaar ausgelegt. Um die gewünschte Genauigkeit bei der Laserspektroskopie zu erreichen, muss ein effizienter und schneller Kühlprozess für die injizierten hochegeladenen Ionen realisiert werden. Dies kann mittels sympathetischer Kühlung in einer lasergekühlten Wolke leichter Ionen realisiert werden. Im Rahmen dieser Arbeit wurde ein Lasersystem und eine Ionenquelle für die Produktion einer solchen 24Mg+ Ionenwolke aufgebaut und erfolgreich an SPECTRAP in Betrieb genommen. Dazu wurde ein Festkörperlasersystem für die Erzeugung von Licht bei 279.6 nm entworfen und aufgebaut. Es besteht aus einem Faserlaser bei 1118 nm der in zwei aufeinanderfolgenden Frequenzverdopplungsstufen frequenzvervierfacht wird. Die Verdopplerstufen sind als aktiv stabilisierte Resonantoren mit nichtlinearen Kristallen ausgelegt. Das Lasersystem liefert unter optimalen Bedingeungen bis zu 15 mW bei der ultravioletten Wellenlänge und erwies sich während der Teststrahlzeiten an SPECTRAP als ausgesprochen zuverlässig. Desweiteren wurde eine Ionequelle für die gepulste Injektion von Mg+ Ionen in die SPECTRAP Falle entwickelt. Diese basiert auf der Elektronenstoßionisation eines thermischen Mg-Atomstrahls und liefert in der gepulsten Extraktion Ionenbündel mit einer kleinen Impuls- und Energieverteilung. Unter Nutzung des Lasersystems konnten damit an SPECTRAP erstmals Ionenwolken mit bis zu 2600 lasergekühlten Mg Ionen erzeugt werden. Der Nachweis erfolgte sowohl mittels Fluoreszenz als auch mit der FFT-ICR Technik. Aus der Analyse des Fluoreszenz-Linienprofils lässt sich sowohl die Sensitivität auf einzelne gespeicherte Ionen als auch eine erreichte Endtemperatur in der Größenordnung von ≈ 100 mK nach wenigen Sekunden Kühlzeit belegen.