948 resultados para Cognitive robotics
Resumo:
After stroke, white matter integrity can be affected both locally and distally to the primary lesion location. It has been shown that tract disruption in mirror's regions of the contralateral hemisphere is associated with degree of functional impairment. Fourteen patients suffering right hemispheric focal stroke (S) and eighteen healthy controls (HC) underwent Diffusion Weighted Imaging (DWI) and neuropsychological assessment. The stroke patient group was divided into poor (SP; n = 8) and good (SG; n = 6) cognitive recovery groups according to their cognitive improvement from the acute phase (72 hours after stroke) to the subacute phase (3 months post-stroke). Whole-brain DWI data analysis was performed by computing Diffusion Tensor Imaging (DTI) followed by Tract Based Spatial Statistics (TBSS). Assessment of effects was obtained computing the correlation of the projections on TBSS skeleton of Fractional Anisotropy (FA) and Radial Diffusivity (RD) with cognitive test results. Significant decrease of FA was found only in right brain anatomical areas for the S group when compared to the HC group. Analyzed separately, stroke patients with poor cognitive recovery showed additional significant FA decrease in several left hemisphere regions; whereas SG patients showed significant decrease only in the left genu of corpus callosum when compared to the HC. For the SG group, whole brain analysis revealed significant correlation between the performance in the Semantic Fluency test and the FA in the right hemisphere as well as between the performance in the Grooved Pegboard Test (GPT) and theTrail Making Test-part A and the FA in the left hemisphere. For the SP group, correlation analysis revealed significant correlation between the performance in the GPT and the FA in the right hemisphere. Palabras clave
Resumo:
Background: The aim of this study is to examine the influence of the catechol-O-methyltranferase (COMT) gene (polymorphism Val158 Met) as a risk factor for Alzheimer's disease (AD) and mild cognitive impairment of amnesic type (MCI), and its synergistic effect with the apolipoprotein E gene (APOE). A total of 223 MCI patients, 345 AD and 253 healthy controls were analyzed. Clinical criteria and neuropsychological tests were used to establish diagnostic groups. The DNA Bank of the University of the Basque Country (UPV-EHU) (Spain) determined COMT Val158 Met and APOE genotypes using real time polymerase chain reaction (rtPCR) and polymerase chain reaction (PCR), and restriction fragment length polymorphism (RFLPs), respectively. Multinomial logistic regression models were used to determine the risk of AD and MCI. Results: Neither COMT alleles nor genotypes were independent risk factors for AD or MCI. The high activity genotypes (GG and AG) showed a synergistic effect with APOE epsilon 4 allele, increasing the risk of AD (OR = 5.96, 95% CI 2.74-12.94, p < 0.001 and OR = 6.71, 95% CI 3.36-13.41, p < 0.001 respectivily). In AD patients this effect was greater in women. In MCI patients such as synergistic effect was only found between AG and APOE epsilon 4 allele (OR = 3.21 95% CI 1.56-6.63, p = 0.02) and was greater in men (OR = 5.88 95% CI 1.69-20.42, p < 0.01). Conclusion: COMT (Val158 Met) polymorphism is not an independent risk factor for AD or MCI, but shows a synergistic effect with APOE epsilon 4 allele that proves greater in women with AD.
Resumo:
Humans are particularly adept at modifying their behavior in accordance with changing environmental demands. Through various mechanisms of cognitive control, individuals are able to tailor actions to fit complex short- and long-term goals. The research described in this thesis uses functional magnetic resonance imaging to characterize the neural correlates of cognitive control at two levels of complexity: response inhibition and self-control in intertemporal choice. First, we examined changes in neural response associated with increased experience and skill in response inhibition; successful response inhibition was associated with decreased neural response over time in the right ventrolateral prefrontal cortex, a region widely implicated in cognitive control, providing evidence for increased neural efficiency with learned automaticity. We also examined a more abstract form of cognitive control using intertemporal choice. In two experiments, we identified putative neural substrates for individual differences in temporal discounting, or the tendency to prefer immediate to delayed rewards. Using dynamic causal models, we characterized the neural circuit between ventromedial prefrontal cortex, an area involved in valuation, and dorsolateral prefrontal cortex, a region implicated in self-control in intertemporal and dietary choice, and found that connectivity from dorsolateral prefrontal cortex to ventromedial prefrontal cortex increases at the time of choice, particularly when delayed rewards are chosen. Moreover, estimates of the strength of connectivity predicted out-of-sample individual rates of temporal discounting, suggesting a neurocomputational mechanism for variation in the ability to delay gratification. Next, we interrogated the hypothesis that individual differences in temporal discounting are in part explained by the ability to imagine future reward outcomes. Using a novel paradigm, we imaged neural response during the imagining of primary rewards, and identified negative correlations between activity in regions associated the processing of both real and imagined rewards (lateral orbitofrontal cortex and ventromedial prefrontal cortex, respectively) and the individual temporal discounting parameters estimated in the previous experiment. These data suggest that individuals who are better able to represent reward outcomes neurally are less susceptible to temporal discounting. Together, these findings provide further insight into role of the prefrontal cortex in implementing cognitive control, and propose neurobiological substrates for individual variation.