317 resultados para Cittadella-Vigodarzere, Margherita.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La segmentazione prevede la partizione di un'immagine in aree strutturalmente o semanticamente coerenti. Nell'imaging medico, è utilizzata per identificare, contornandole, Regioni di Interesse (ROI) clinico, quali lesioni tumorali, oggetto di approfondimento tramite analisi semiautomatiche e automatiche, o bersaglio di trattamenti localizzati. La segmentazione di lesioni tumorali, assistita o automatica, consiste nell’individuazione di pixel o voxel, in immagini o volumi, appartenenti al tumore. La tecnica assistita prevede che il medico disegni la ROI, mentre quella automatica è svolta da software addestrati, tra cui i sistemi Computer Aided Detection (CAD). Mediante tecniche di visione artificiale, dalle ROI si estraggono caratteristiche numeriche, feature, con valore diagnostico, predittivo, o prognostico. L’obiettivo di questa Tesi è progettare e sviluppare un software di segmentazione assistita che permetta al medico di disegnare in modo semplice ed efficace una o più ROI in maniera organizzata e strutturata per futura elaborazione ed analisi, nonché visualizzazione. Partendo da Aliza, applicativo open-source, visualizzatore di esami radiologici in formato DICOM, è stata estesa l’interfaccia grafica per gestire disegno, organizzazione e memorizzazione automatica delle ROI. Inoltre, è stata implementata una procedura automatica di elaborazione ed analisi di ROI disegnate su lesioni tumorali prostatiche, per predire, di ognuna, la probabilità di cancro clinicamente non-significativo e significativo (con prognosi peggiore). Per tale scopo, è stato addestrato un classificatore lineare basato su Support Vector Machine, su una popolazione di 89 pazienti con 117 lesioni (56 clinicamente significative), ottenendo, in test, accuratezza = 77%, sensibilità = 86% e specificità = 69%. Il sistema sviluppato assiste il radiologo, fornendo una seconda opinione, non vincolante, adiuvante nella definizione del quadro clinico e della prognosi, nonché delle scelte terapeutiche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I problemi di ottimizzazione di dimensione finita di larga scala spesso derivano dalla discretizzazione di problemi di dimensione infinita. È perciò possibile descrivere il problema di ottimizzazione su più livelli discreti. Lavorando su un livello più basso di quello del problema considerato, si possono calcolare soluzioni approssimate che saranno poi punti di partenza per il problema di ottimizzazione al livello più fine. I metodi multilivello, già ampiamente presenti in letteratura a partire dagli anni Novanta, sfruttano tale caratteristica dei problemi di ottimizzazione per migliorare le prestazioni dei metodi di ottimizzazione standard. L’obiettivo di questa tesi è quello di implementare una variante multilivello del metodo del gradiente (MGM) e di testarlo su due diversi campi: la risoluzione delle Equazioni alle Derivate Parziali la ricostruzione di immagini. In questo elaborato viene illustrata la teoria dello schema multilivello e presentato l’algoritmo di MGM utilizzato nei nostri esperimenti. Sono poi discusse le modalità di utilizzo di MGM per i due problemi sopra presentati. Per il problema PDE, i risultati ottenuti mostrano un ottimo comportamento di MGM rispetto alla implementazione classica ad un livello. I risultati ottenuti per il problema di ricostruzione di immagini, al contrario delle PDEs, evidenziano come MGM sia efficace solo in determinate condizioni.