999 resultados para Cibicides kullenbergi, d13C


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program Site 1146 was drilled within a small rift basin on the midcontinental slope of the northern South China Sea. It is located at 19°27.4'N, 116°16.37'E, in 2092 m water depth. This site was drilled to recover records of Asian monsoon variability into the middle Miocene with temporal resolution sufficient for orbital-scale analyses. Here we present oxygen and carbon isotopic measurements of planktonic foraminifers (Globigerinoides ruber) and benthic foraminifers (Uvigerina peregrina and Cibicides wuellerstorfi) as well as a preliminary age model for the top 185 meters composite depth (mcd).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Saanich Inlet has been a highly productive fjord since the last glaciation. During ODP Leg 169S, nearly 70 m of Holocene sediments were recovered from Hole 1034 at the center of the inlet. The younger sediments are laminated, anaerobic, and rich in organic material (1-2.5 wt.% Corg), whereas the older sediments below 70 mbsf are non-laminated, aerobic, with glacio-marine characteristics and have a significantly lower organic matter content. This difference is also reflected in the changes of interstitial fluids, and in biomarker compositions and their carbon isotope signals. The bacterially-derived hopanoid 17alpha(H),21beta(H)-hop-22(29)-ene (diploptene) occurs in Saanich Inlet sediments throughout the Holocene but is not present in Pleistocene glacio-marine sediments. Its concentration increases after ~6000 years BP up to present time to about 70 µg/g Corg, whereas terrigenous biomarkers such as the n-alkane C31 are low throughout the Holocene (<51 µg/g Corg) and even slightly decrease to 36 µg/g Corg at the most recent time. The increasing concentrations of diploptene in sediments younger than ~6000 years BP separate a recent period of higher primary productivity, stronger anoxic bottom waters, and higher bacterial activity from an older period with lesser activity, heretofore undifferentiated. Carbon isotopic compositions of diploptene in the Holocene are between ~31.5 and ~39.6 per mil PDB after ~6000 years BP. These differences in the carbon isotopic record of diploptene probably reflect changes in microbial community structure of bacteria living at the oxic-anoxic interface of the overlying water column. The heavier isotope values are consistent with the activity of nitrifying bacteria and the lighter isotope values with that of aerobic methanotrophic bacteria. Therefore, intermediate delta13C values probably represent mixtures between the populations. In contrast, carbon isotopic compositions of n-C31 are roughly constant at ~31.4 ± 1.1 per mil PDB throughout the Holocene, indicating a uniform input from cuticular waxes of higher plants. Prior to ~6000 years BP, diploptene enriched in 13C of up to -26.3 per mil PDB is indicative of cyanobacteria living in the photic zone and suggests a period of lower primary productivity, more oxygenated bottom waters, and hence lower bacterial activity during the earliest Holocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Records of benthic foraminifera from North Atlantic DSDP Site 607 and Hole 610A indicate changes in deep water conditions through the middle to late Pliocene (3.15 to 2.85 Ma). Quantitative analyses of modem associations in the North Atlantic indicate that seven species, Fontbotia wuellerstorfi, Cibicidoides kullenbergi, Uvigerina peregrina, Nuttallides umboniferus, Melonis pompilioides, Globocassidulina subglobosa and Epistominella exigua are useful for paleoenvironmental interpretation. The western North Atlantic basin (Site 607) was occupied by North Atlantic Deep Water (NADW) until c. 2.88 Ma. At that time, N. umboniferus increased, indicating an influx of Southern Ocean Water (SOW). The eastern North Atlantic basin (Hole 610A) was occupied by a relatively warm water mass, possibly Northeastern Atlantic Deep Water (NEADW), through c. 2.94 Ma when SOW more strongly influenced the site. These interpretations are consistent with benthic delta18O and delta13C records from 607 and 610A (Raymo et al., 1992). The results presented in this paper suggest that the North Atlantic was strongly influenced by northern component deep water circulation until 2.90-2.95 Ma. After that there was a transition toward a glacially driven North Atlantic circulation more strongly influenced by SOW associated with the onset of Northern Hemisphere glaciation. The circulation change follows the last significant SST and atmospheric warming prior to c. 2.6 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep-sea benthic foraminiferal assemblages from Ocean Drilling Program (ODP) Site 1143 located in the southern South China Sea (SCS) were investigated to evaluate the relationship between faunal composition patterns and paleoceanographic changes during the last 6 million years (late Miocene to Holocene). We used multivariate statistics (correspondence analysis) to analyze carbon-flux-related changes in assemblage composition of benthic foraminifers. Additional proxies for carbon flux and deep-water ventilation include delta13C records of epifaunal Cibicidoides wuellerstorfi and infaunal Uvigerina peregrina var. dirupta and Melonis pompilioides, benthic foraminiferal accumulation rates (BFARs), diversity indices, and relative abundances of indicator species. We observe three significant benthic faunal changes in the southern South China Sea during the last 6 million years. Strong fluctuations in BFAR and relative abundance of productivity indicator species between glacial and interglacial stages after the mid-Pleistocene revolution (MPR) at approximately 0.9 Ma, indicating stronger seasonal carbon flux fluctuations, are accompanied by the extinction of such species as Stilostomella spp. Increases in carbon flux indicator species are coupled with an overall decrease in benthic foraminifer diversity around 3.0 Ma in the late Pliocene. This may indicate increasing carbon flux in a period of productivity maximum caused by enhanced offshore upwelling from intensified winter monsoon wind strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Eocene-Oligocene oxygen and carbon isotope history based on planktonic and benthic foraminifers from Deep Sea Drilling Project Leg 71 cores has been constructed for the Maurice Ewing Bank of the eastern Falkland Plateau, Southwest Atlantic Ocean. Specifically, the cores cover portions of the middle Eocene, upper Eocene, and lower Oligocene. Surface water isotopic temperatures postulated for the middle Eocene at Site 512 fluctuated within about four degrees but generally averaged about 9°C. Bottom isotopic temperatures at Site 512 (water depth, 1846 m) were generally a degree lower than surface water temperatures. Surface water isotopic temperatures at Site 511 initially averaged about 11°C during the late Eocene, but dropped to an average of 7°C in the early Oligocene. Bottom isotopic temperatures at Site 511 (water depth, 2589 m) generally record temperatures between 12.5°C and 8°C, similar to the range in the surface water isotopic temperatures. During the early Oligocene, bottom isotopic temperatures dropped sharply and averaged about 2°C (very close to present-day values). Surface water temperature values also decreased to an average of about 7°C, therefore leading to a significant divergence between surface and bottom water isotopic temperatures during the early Oligocene. Comparisons among Southern Ocean DSDP Sites 511, 512, and 277, and between these and other DSDP sites from central and northern latitudes (Sites 44, 167, 171, 292, 357, 398, 119, and 401) show that much of the Eocene was characterized by relatively warm temperatures until sometime in either the middle Eocene, late Eocene, or early Oligocene. At each site, conspicuous 18O enrichments occur in both the benthic and planktonic foraminifers over a relatively short period of time. Although a general trend toward a climatic deterioration is evident, the density of data points among the various studies is still too sparse to determine either synchrony or time-transgression between the major isotopic events. A close correlation could be made between the Site 511 oxygen isotope temperature curve and paleoclimatic trends derived independently from radiolarian studies. The sharp temperature drop and the divergence between bottom and surface water temperatures during the early Oligocene apparently reflect a major expansion of the antarctic water mass. The migration of the boundary between the subantarctic and antarctic water masses over the site at this time would account in part for the sharp temperature changes. Sharp changes of this nature would not necessarily be noted in other geographic areas, particularly those to the north which have different oceanographic regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paleoceanographic studies using benthic foraminiferal Cd as a nutrient tracer have provided a robust means of reconstructing glacial Atlantic Ocean water mass geometry, but a paucity of data from the South Atlantic above 1200 m has limited investigation of Antarctic Intermediate Water (AAIW) configuration and formation. A new Cd depth profile from Brazil margin sediments suggests that AAIW penetrated northward at 1100 m to at least 27°S in the glacial Atlantic. It exhibited substantially reduced d13Cas values, confirming preliminary evidence that this AAIW was unique to the glacial Atlantic and that it formed differently than today, with less atmospheric contact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bounty Trough, east of New Zealand, lies along the southeastern edge of the present-day Subtropical Front (STF), and is a major conduit via the Bounty Channel, for terrigenous sediment supply from the uplifted Southern Alps to the abyssal Bounty Fan. Census data on 65 benthic foraminiferal faunas (>63 µm) from upper bathyal (ODP 1119), lower bathyal (DSDP 594) and abyssal (ODP 1122) sequences, test and refine existing models for the paleoceanographic and sedimentary history of the trough through the last 150 ka (marine isotope stages, MIS 6-1). Cluster analysis allows recognition of six species groups, whose distribution patterns coincide with bathymetry, the climate cycles and displaced turbidite beds. Detrended canonical correspondence analysis and comparisons with modern faunal patterns suggest that the groups are most strongly influenced by food supply (organic carbon flux), and to a lesser extent by bottom water oxygen and factors relating to sediment type. Major faunal changes at upper bathyal depths (1119) probably resulted from cycles of counter-intuitive seaward-landward migrations of the Southland Front (SF) (north-south sector of the STF). Benthic foraminiferal changes suggest that lower nutrient, cool Subantarctic Surface Water (SAW) was overhead in warm intervals, and higher nutrient-bearing, warm neritic Subtropical Surface Water (STW) was overhead in cold intervals. At lower bathyal depths (594), foraminiferal changes indicate increased glacial productivity and lowered bottom oxygen, attributed to increased upwelling and inflow of cold, nutrient-rich, Antarctic Intermediate Water (AAIW) and shallowing of the oxygen-minimum zone (upper Circum Polar Deep Water, CPDW). The observed cyclical benthic foraminiferal changes are not a result of associations migrating up and down the slope, as glacial faunas (dominated by Globocassidulina canalisuturata and Eilohedra levicula at upper and lower bathyal depths, respectively) are markedly different from those currently living in the Bounty Trough. On the abyssal Bounty Fan (1122), faunal changes correlate most strongly with grain size, and are attributed to varying amounts of mixing of displaced and in-situ faunas. Most of the displaced foraminifera in turbiditic sand beds are sourced from mid-outer shelf depths at the head of the Bounty Channel. Turbidity currents were more prevalent during, but not restricted to, glacial intervals.