973 resultados para Chemistry of the water


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new homology-based models of the glutamate binding site (in closed and open forms) of the NMDA receptor NR2B subunit derived from X-ray structures of the water soluble AMPA sensitive glutamate receptor. The models were used for revealing binding modes of agonists and competitive antagonists, as well as for rationalizing known experimental facts concerning structure-activity relationships: (i) the switching between the agonist and the antagonist modes of action upon lengthening the chain between the distal acidic group and the amino acid moiety, (ii) the preference for the methyl group attached to the a-amino group of ligands, (iii) the preference for the D-configuration of agonists and antagonists, and (iv) the existence of "superacidic" agonists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-destructive evaluation of the water permeability of concrete structures is a long standing challenge, principally due to the difficulty of achieving a uni-direction flow for computing the water permeability coefficient. The use of a guard ring (GR) was originally proposed for the in situ sorptivity test, but little information can be found for the water permeability test. In this study, the effect of a GR was carefully examined through the flow simulation, which was verified by carrying out experiments. It was observed that the GR can confine the flow near the surface, but cannot achieve a uni-directional flow across the whole depth of flow. To achieve a better performance, it is essential to consider the effects of the size of the inner seal and the GR and the significant interaction between these two. The analysis of the experimental data has indicated that the GR influences the flow for porous concretes, but there is no significant effect for dense concretes. Further investigation, validated using the flow-net theory, has shown a strong correlation between the water permeability coefficients obtained with the GR (K w-GR) and without it (K w-No GR), suggesting that one dimensional flow is not essential for interpreting data for site tests. Another practical issue was that more than 30 % of the tests with GR failed due to the difficulty of achieving a good seal between the inner and the outer chambers. Based on the work reported in this paper, a new water permeability test is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The River Bush must reach a standard of good ecological potential (GEP) by 2015 due to the requirements of the water framework directive. The role of sediments within a water body is extremely important to all aspects of a river's regime. The aim of this research is to investigate the effects of Altnahinch Dam on sediment distribution in the River Bush (a heavily modified water body) with comparison made against the Glendun River (an unmodified water body). Samples collected from the rivers were analysed by physical (pebble count, sieve analysis) and statistical methods (ANOVA, GRADISTAT). An increase in fine sediments upstream of the dam provides evidence that the dam is impacting sediment distribution. Downstream effects are not shown to be significant. The output of this study also implies similar impacts at other drinking water storage impoundments. This research recommends that a sediment management plan be put in place for Altnahinch Dam and that further studies be carried-out concentrating on fine sediment distribution upstream of the dam. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At intermediate depths of the Arabian Sea, the circulation and characteristics of water are more influenced by the high saline waters from the north and low saline waters from the south of equator. The interaction of these waters which greatly differ in characteristics is less understood compared to that at the upper layers. An understanding of the nature of the intermediate waters is of vital importance not only because of the unusual characteristics of the waters but also due to the influx of the different water masses from the neighbouring Red Sea and Persian Gulf. Hence, in the present investigation, it is proposed to study the water characteristics and current structure of the intermediate waters in the Arabian Sea through the distribution of the water properties on the isanosteric surfaces of 100, 80, 60 and 4O—cl/t, vertical sections, and scatter diagrams An attempt is also made to present the potential vorticity between different steric levels to understand the circulation and mixing processes. Data collected during and subsequent to International Indian Ocean Expedition (IIOE) are used for this study. The thesis has been divided into six chapters with further sub divisions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water scarcity and food insecurity are pervasive issues in the developing world and are also intrinsically linked to one another. Through the connection of the water cycle and the carbon cycle this study illustrates that synergistic benefits can be realized by small scale farmers through the implementation of waste water irrigated agroforestry. The WaNuLCAS model is employed using La Huerta agroforestry site in Texcoco, South Central Mexico, as the basis for parameterization. The results of model simulations depicting scenarios of water scarcity and waste water irrigation clearly show that the addition of waste water greatly increases the agroforestry system’s generation of crop yields, above- and below-ground biomass, soil organic matter and carbon storage potential. This increase in carbon sequestration by the system translates into better local food security, diversified household income through payments for ecosystem services and contributes to the mitigation of global climate change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research of this thesis dissertation covers developments and applications of short-and long-term climate predictions. The short-term prediction emphasizes monthly and seasonal climate, i.e. forecasting from up to the next month over a season to up to a year or so. The long-term predictions pertain to the analysis of inter-annual- and decadal climate variations over the whole 21st century. These two climate prediction methods are validated and applied in the study area, namely, Khlong Yai (KY) water basin located in the eastern seaboard of Thailand which is a major industrial zone of the country and which has been suffering from severe drought and water shortage in recent years. Since water resources are essential for the further industrial development in this region, a thorough analysis of the potential climate change with its subsequent impact on the water supply in the area is at the heart of this thesis research. The short-term forecast of the next-season climate, such as temperatures and rainfall, offers a potential general guideline for water management and reservoir operation. To that avail, statistical models based on autoregressive techniques, i.e., AR-, ARIMA- and ARIMAex-, which includes additional external regressors, and multiple linear regression- (MLR) models, are developed and applied in the study region. Teleconnections between ocean states and the local climate are investigated and used as extra external predictors in the ARIMAex- and the MLR-model and shown to enhance the accuracy of the short-term predictions significantly. However, as the ocean state – local climate teleconnective relationships provide only a one- to four-month ahead lead time, the ocean state indices can support only a one-season-ahead forecast. Hence, GCM- climate predictors are also suggested as an additional predictor-set for a more reliable and somewhat longer short-term forecast. For the preparation of “pre-warning” information for up-coming possible future climate change with potential adverse hydrological impacts in the study region, the long-term climate prediction methodology is applied. The latter is based on the downscaling of climate predictions from several single- and multi-domain GCMs, using the two well-known downscaling methods SDSM and LARS-WG and a newly developed MLR-downscaling technique that allows the incorporation of a multitude of monthly or daily climate predictors from one- or several (multi-domain) parent GCMs. The numerous downscaling experiments indicate that the MLR- method is more accurate than SDSM and LARS-WG in predicting the recent past 20th-century (1971-2000) long-term monthly climate in the region. The MLR-model is, consequently, then employed to downscale 21st-century GCM- climate predictions under SRES-scenarios A1B, A2 and B1. However, since the hydrological watershed model requires daily-scale climate input data, a new stochastic daily climate generator is developed to rescale monthly observed or predicted climate series to daily series, while adhering to the statistical and geospatial distributional attributes of observed (past) daily climate series in the calibration phase. Employing this daily climate generator, 30 realizations of future daily climate series from downscaled monthly GCM-climate predictor sets are produced and used as input in the SWAT- distributed watershed model, to simulate future streamflow and other hydrological water budget components in the study region in a multi-realization manner. In addition to a general examination of the future changes of the hydrological regime in the KY-basin, potential future changes of the water budgets of three main reservoirs in the basin are analysed, as these are a major source of water supply in the study region. The results of the long-term 21st-century downscaled climate predictions provide evidence that, compared with the past 20th-reference period, the future climate in the study area will be more extreme, particularly, for SRES A1B. Thus, the temperatures will be higher and exhibit larger fluctuations. Although the future intensity of the rainfall is nearly constant, its spatial distribution across the region is partially changing. There is further evidence that the sequential rainfall occurrence will be decreased, so that short periods of high intensities will be followed by longer dry spells. This change in the sequential rainfall pattern will also lead to seasonal reductions of the streamflow and seasonal changes (decreases) of the water storage in the reservoirs. In any case, these predicted future climate changes with their hydrological impacts should encourage water planner and policy makers to develop adaptation strategies to properly handle the future water supply in this area, following the guidelines suggested in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In January 1992, there was a major pollutant event for the River Canon and downstream with its confluence to the River Fal and the Fal estuary in the west Cornwall. This incident was associated with the discharge of several million gallons of highly polluted water from the abandoned Wheal Jane tin mine that also extracted Ag, Cu and Zn ore. Later that year, the Centre for Ecology and Hydrology (CBH; then Institute of Hydrology) Wallingford undertook daily monitoring of the River Canon for a range of major, minor and trace elements to assess the nature and the dynamics of the pollutant discharges. These data cover an 18-month period when there remained major water-quality problems after the initial phase of surface water contamination. Here, a summary is provided of the water quality found, as a backdrop to set against subsequent remediation. Two types of water-quality determinant grouping were observed. The first type comprises the determinants B, Cs, Ca, Li, K, Na, SO4, Rb and Sr, and their concentrations are positively correlated with each other but inversely correlated with flow. This type of water-quality determinant shows variations in concentration that broadly link to the normal hydrogeochemical processes within the catchment, with limited confounding issues associated with mine drainage. The second type of water-quality determinant comprises Al, Be, Cd, Ce, Co, Cu, Fe, La, Pb, Pr, Nd, Ni, Si, Sb, U, Y and Zn, and concentrations for all this group are positively correlated. The determinants in this second group all have concentrations that are negatively correlated with pH. This group links primarily to pollutant mine discharge. The water-quality variations in the River Camon are described in relation to these two distinct hydrogeochemical groupings. (C) 2004 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A regional overview of the water quality and ecology of the River Lee catchment is presented. Specifically, data describing the chemical, microbiological and macrobiological water quality and fisheries communities have been analysed, based on a division into river, sewage treatment works, fish-farm, lake and industrial samples. Nutrient enrichment and the highest concentrations of metals and micro-organics were found in the urbanised, lower reaches of the Lee and in the Lee Navigation. Average annual concentrations of metals were generally within environmental quality standards although, oil many occasions, concentrations of cadmium, copper, lead, mercury and zinc were in excess of the standards. Various organic substances (used as herbicides, fungicides, insecticides, chlorination by-products and industrial solvents) were widely detected in the Lee system. Concentrations of ten micro-organic substances were observed in excess of their environmental quality standards, though not in terms of annual averages. Sewage treatment works were the principal point source input of nutrients. metals and micro-organic determinands to the catchment. Diffuse nitrogen sources contributed approximately 60% and 27% of the in-stream load in the upper and lower Lee respectively, whereas approximately 60% and 20% of the in-stream phosphorus load was derived from diffuse sources in the upper and lower Lee. For metals, the most significant source was the urban runoff from North London. In reaches less affected by effluent discharges, diffuse runoff from urban and agricultural areas dominated trends. Flig-h microbiological content, observed in the River Lee particularly in urbanised reaches, was far in excess of the EC Bathing Water Directive standards. Water quality issues and degraded habitat in the lower reaches of the Lee have led to impoverished aquatic fauna but, within the mid-catchment reaches and upper agricultural tributaries, less nutrient enrichment and channel alteration has permitted more diverse aquatic fauna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption of glycine on Ptf111g under UHV conditions and in different aqueous environments was studied by XPS (UHV and ambient pressure) and NEXAFS. Under UHV conditions, glycine adsorbs in its neutral molecular state up to about 0.15 ML. Further deposition leads to the formation of an additional zwitterionic species, which is in direct contact with the substrate surface, followed by the growth of multilayers, which also consist of zwitterions. The neutral surface species is most stable and decomposes at 360 K through a multi-step process which includes the formation of methylamine and carbon monoxide. When glycine and water are co-adsorbed in UHV at low temperatures (< 170 K) inter-layer diffusion is inhibited and the surface composition depends on the adsorption sequence. Water adsorbed on top of a glycine layer does not lead to significant changes in its chemical state. When glycine is adsorbed on top of a pre-adsorbed chemisorbed water layer or thick ice layer, however, it is found in its zwitterionic state, even at low coverage. No difference is seen in the chemical state of glycine when the layers are exposed to ambient water vapor pressure up to 0.2 Torr at temperatures above 300 K. Also the decomposition temperature stays the same, 360 K, irrespective of the water vapor pressure. Only the reaction path of the decomposition products is affected by ambient water vapor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the implications of climate change for the water environment and its management in England. There is a large literature, but most studies have looked at flow volumes or nutrients and none have considered explicitly the implications of climate change for the delivery of water management objectives. Studies have been undertaken in a small number of locations. Studies have used observations from the past to infer future changes, and have used numerical simulation models with climate change scenarios. The literature indicates that climate change poses risks to the delivery of water management objectives, but that these risks depend on local catchment and water body conditions. Climate change affects the status of water bodies, and it affects the effectiveness of measures to manage the water environment and meet policy objectives. The future impact of climate change on the water environment and its management is uncertain. Impacts are dependent on changes in the duration of dry spells and frequency of ‘flushing’ events, which are highly uncertain and not included in current climate scenarios. There is a good qualitative understanding of ways in which systems may change, but interactions between components of the water environment are poorly understood. Predictive models are only available for some components, and model parametric and structural uncertainty has not been evaluated. The impacts of climate change depend on other pressures on the water environment in a catchment, and also on the management interventions that are undertaken to achieve water management objectives. The paper has also developed a series of consistent conceptual models describing the implications of climate change for pressures on the water environment, based around the source-pathway-receptor concept. They provide a framework for a systematic assessment across catchments and pressures of the implications of climate change for the water environment and its management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Enriquillo and Azuei are saltwater lakes located in a closed water basin in the southwestern region of the island of La Hispaniola, these have been experiencing dramatic changes in total lake-surface area coverage during the period 1980-2012. The size of Lake Enriquillo presented a surface area of approximately 276 km2 in 1984, gradually decreasing to 172 km2 in 1996. The surface area of the lake reached its lowest point in the satellite observation record in 2004, at 165 km2. Then the recent growth of the lake began reaching its 1984 size by 2006. Based on surface area measurement for June and July 2013, Lake Enriquillo has a surface area of ~358 km2. Sumatra sizes at both ends of the record are 116 km2 in 1984 and 134 km2in 2013, an overall 15.8% increase in 30 years. Determining the causes of lake surface area changes is of extreme importance due to its environmental, social, and economic impacts. The overall goal of this study is to quantify the changing water balance in these lakes and their catchment area using satellite and ground observations and a regional atmospheric-hydrologic modeling approach. Data analyses of environmental variables in the region reflect a hydrological unbalance of the lakes due to changing regional hydro-climatic conditions. Historical data show precipitation, land surface temperature and humidity, and sea surface temperature (SST), increasing over region during the past decades. Salinity levels have also been decreasing by more than 30% from previously reported baseline levels. Here we present a summary of the historical data obtained, new sensors deployed in the sourrounding sierras and the lakes, and the integrated modeling exercises. As well as the challenges of gathering, storing, sharing, and analyzing this large volumen of data in a remote location from such a diverse number of sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo desta investigação foi observar a distribuição vertical da comunidade do zooplâncton no Lago Amapá (10º2'36S e 67º50'24W), localizado na planície de inundação do Rio Acre. Amostragens foram conduzidas em três diferentes profundidades da coluna da água, considerando aspectos sazonais do zooplâncton, parâmetros físicos, químicos e biológicos. Coletas foram realizadas semanalmente com Garrafa de Van Dorn. As espécies apresentaram maiores concentrações no meio da coluna da água. Foram encontradas 38 espécies, assim distribuídas: Rotifera (30), Cladocera (5) e Cyclopoida (3). A temperatura da coluna da água em geral apresentou-se alta, em torno de 30ºC, com pequena variação, resultando em baixa viscosidade. O índice de Jaccard, comparando-se as três estações de coletas, demonstrou que durante a fase de águas baixas, as estações 1 e 3 foram as mais similares (Cj = 0.7058), especialmente no meio da coluna da água. Lago Amapá apresentou características em conformidade com o Modelo do Distúrbio Intermediário, favorecendo a colonização de grupos oportunistas, tais como rotíferos.