958 resultados para Chemical properties of materials
Resumo:
Power Point presentado en The Energy and Materials Research Conference - EMR2015 celebrado en Madrid (España) entre el 25-27 de febrero de 2015
Resumo:
The effect of Al(PO3)(3) content on physical, chemical and optical properties of fluorophosphate glasses for 2 mu m application, such as thermal stability, chemical durability, surface hardness, absorption spectra and emission spectra, is investigated. With the increment of Al(PO3)(3) content, the thermal stability characterized by the gap of T-g and T,, increases first and then decreases, and reaches the maximum level containing 5 mol% Al(PO3)(3) content. The density and chemical durability decrease monotonously with the introduction of Al(PO3)(3) content increasing, while the refractive index and surface hardness increase. Above properties of fluorophosphate glasses are also compared with fluoride glasses and phosphate glasses. The Judd-Ofelt parameters, absorption and emission cross sections are discussed based on the absorption spectra of Tm-doped glasses. The emission spectra are also measured and the 1.8 mu m fluorescence of the sample is obvious indicating that it is suitable to 2 mu m application. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Nonpolar a-plane (1120) ZnO thin films have been fabricated on gamma-LiAlO2 (302) substrates via the low-pressure metal-organic chemical vapor deposition. An obvious intensity variation of the E-2 mode in the Raman spectra indicates that there exhibits in-plane optical anisotropy in the a-plane ZnO thin films. Highly-oriented uniform grains of rectangular shape can be seen from the atomic force microscopy images, which mean that the lateral growth rate of the thin films is also anisotropic. It is demonstrated experimentally that a buffer layer deposited at a low temperature (200 degrees C) can improve the structural and optical properties of the epilayer to a large extent. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
There has been a growing interest in hydrogenated silicon carbide films (SiC:H) prepared using the electron cyclotron resonance-chemical vapour deposition (ECR-CVD) technique. Using the ECR-CVD technique, SiC:H films have been prepared from a mixture of methane, silane and hydrogen, with phosphine as the doping gas. The effects of changes in the microwave power (from 150 to 900 W) on the film properties were investigated in a series of phosphorus-doped SiC:H films. In particular, the changes in the deposition rate, optical bandgap, activation energy and conductivity were investigated in conjunction with results from Raman scattering and Fourier transform infra-red (FTIR) analysis. It was found that increase in the microwave power has the effect of enhancing the formation of the silicon microcrystalline phase in the amorphous matrix of the SiC:H films. This occurs in correspondence to a rapid increase in the conductivity and a reduction in the activation energy, both of which exhibit small variations in samples deposited at microwave powers exceeding 500 W. Analysis of IR absorption results suggests that hydrogen is bonded to silicon in the Si-H stretching mode and to carbon in the sp3 CHn rocking/wagging and bending mode in films deposited at higher microwave powers.
Resumo:
Micro-electro-mechanical systems, MEMS, is a rapidly growing interdisciplinary technology within the general field of Micro-Systems Technology which deals with the design and manufacture of miniaturised machines with major dimensions at the scale of tens, to perhaps hundreds, of microns. Because they depend on the cube of a representative dimension, component masses and inertias rapidly become small as size decreases whereas surface and tribological effects, which often depend on area, become increasingly important. Although MEMS components and their areas of contact are small, tribological conditions, measured by contact pressures or acceptable wear rates, are demanding and technical and commercial success will require careful measurement and precise control of surface topography and properties. Fabrication of small numbers of MEMS devices designed to test potential material combinations can be prohibitively expensive and thus there is a need for small scale test facilities which mimic the contact conditions within a micro-machine without themselves requiring processing within a full semiconductor foundry. The talk will illustrate some initial experimental results from a small-scale experimental device which meets these requirements, examining in particular the performance of Diamond-Like-Carbon coatings on a silicon substrate. Copyright © 2005 by ASME.
Resumo:
Shark livers are considered as an important raw material providing a quality fish oil. It has been reported to aid white — blood-cell production and act as an active ingredient in hemorrhoid treatments. It is also reported that liver oil as a good supplement of vitamin A and poly-unsaturated fatty acids which are important to the development of brain cells in human. Freshness of livers is very important to extract better quality oil. In Sri Lanka, the annual shark production amounts to 8000t, however the quality of livers collected from landing sites has not being measured yet. Present study was conducted to evaluate the quality of silky (Charcarninus fakiformis) shark livers available in Negombo and Beruwala landing sites in the West Coast of Sri Lanka and also to study the relationship between organoleptic and bio-chemical correlation on freshness of shark livers. Liver samples which were collected from landing sites in the West coast of Sri Lanka, were evaluated for external and internal colour, texture and odour. Total volatile nitrogen (TVN), pH value, free fatty acid (FFA%) and peroxide (PV) values of livers were also determined to assess quality. According to the organoleptic scoring system 4.3% of liver samples were categorized as best in quality while 30.4%, 56.5% and 8.7% rated as good, medium and poor in quality respectively at the Negombo and Beruwala landing sites. Bio-chemical analysis showed that the better quality livers had the highest score for sensory evaluation and low values for TVN, FFA and peroxide value while low quality livers gave low score for sensory evaluation and high TVN, FFA, peroxide values. Correlation coefficient of organoleptic scores against total volatile nitrogen value, pH value, free fatty acid % and peroxide value of shark livers were determined by statistical analysis. Organoleptic score of shark livers was found to be highly.