977 resultados para Chemical and enzymatic hydrolysis
Resumo:
The influence of fluid flux on petrogenesis in the Tonga-Kermadec Arc was investigated using ion microprobe measurements of B/Be and boron isotope ratios (11B/10B) to document the source and relative volumes of the fluids released from the subducting oceanic plate. We analyzed young lavas from eight different islands along the Tonga-Kermadec Arc, as well as glass shards in volcanic sediments from Ocean Drilling Program (ODP) Site 840, which record the variations in the chemistry of Tonga magmatism since 7 Ma. B/Be is variable (5.8-122), in young Tonga-Kermadec Arc lavas. In contrast, glass shards from around 3 to 4 Ma old volcanic sediments at Site 840 have the highest B/Be values yet reported for arc lavas (18-607). These values are too high to be related simply to a sediment influence on petrogenesis. Together with very high d11B values (-11.6 to +37.5) for the same shards and lavas these data indicate that most of the B is derived from fluid escaped from the subducting altered Pacific oceanic crust, rather than from sediment. High d11B values also reflect large degrees of isotopic fractionation in this cold fast subduction zone. Lower d11B values noted in the Kermadec Arc (17 to -4.4) are related to the influence of sediment eroded from New Zealand and slower convergence. High fluid flux (B/Be) is synchronous in Tonga and the Marianas at 3 to 4 Ma and may be related to acceleration of the Pacific Plate just prior to this time. The timing of maximum B/Be at 3 to 4 Ma correlates with maximum light rare earth (LREE) and high field strength element depletion. This suggests maximum degrees of partial melting at this time. Although thinning of the arc lithosphere during rifting to form the Lau Basin is expected to influence the arc geochemistry, variable aqueous fluid flux from the subducting plate alone appears capable of explaining boron and other trace element systematics in the Tonga-Kermadec Arc with no indication of slab melting.
Resumo:
Abyssal peridotite from the 15°20'N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at Sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe(2+)/Fe(3+) ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high a_SiO2 fluids causing the development of smooth, LREE enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.
Resumo:
Interstitial waters and sediments from DSDP sites 288 and 289 contain information on the chemistry and diagenesis of carbonate in deep-sea sediments and on the role of volcanic matter alteration processes. Sr/Ca ratios are species dependent in unaltered foraminifera from site 289 and atom ratios (0.0012-0.0016) exceed those predicted by distribution coefficent data (~0.0004). During diagenesis Sr/Ca ratios of carbonates decrease and reach the theoretical distribution at a depth which is identical to the depth of Sr isotopic equilibration, where 87Sr/86Sr ratios of interstitial waters and carbonates converge. Mg/Ca ratios in the carbonates do not increase with depth as found in some other DSDP sites, possibly because of diagenetic re-equilibration with interstitial waters showing decreasing Mg(2+)/Ca(2+) ratios with depth due to Ca input and Mg removal by alteration of volcanic matter. Interstitial 18O/16O ratios increase with depth at site 289 to d18O = 0.67? (SMOW), reflecting carbonate recrystallization at elevated temperatures (>/= 20°C), the first recorded evidence of this effect in interstitial waters. Interstitial Sr2+ concentrations reach high levels, up to 1 mM, chiefly because of carbonate recrystallization. However, 87Sr/86Sr ratios decrease from 0.7092 to less than 0.7078, lower than for contemporaneous sea water, showing that there is a volcanic input of strontium at depth. This volcanic component is recorded in the Sr isotopic composition of recrystallized calcites. Isotopic compositions of the unrecrystallized calcites suggests that the rate of increase of the 87Sr/86Sr ratio of sea water with time has been faster since 3 my ago than in the preceding 13 my.
Resumo:
Amino acid composition of bottom sediments on the northwestern continental slope of Africa is determined. Correlation similar to that found earlier in Caspian sediments between type of amino acid spectra of Atlantic sediments and distribution of reduced forms of sulfur in them is found. These correlations result from geochemical activity of benthic biocoenosis, which transforms sulfur compounds.
Resumo:
We evaluated above- and belowground ecosystem changes in a 16 year, combined fertilization and warming experiment in a High Arctic tundra deciduous shrub heath (Alexandra Fiord, Ellesmere Island, NU, Canada). Soil emissions of the three key greenhouse gases (GHGs) (carbon dioxide, methane, and nitrous oxide) were measured in mid-July 2009 using soil respiration chambers attached to a FTIR system. Soil chemical and biochemical properties including Q10 values for CO2, CH4, and N2O, Bacteria and Archaea assemblage composition, and the diversity and prevalence of key nitrogen cycling genes including bacterial amoA, crenarchaeal amoA, and nosZ were measured. Warming and fertilization caused strong increases in plant community cover and height but had limited effects on GHG fluxes and no substantial effect on soil chemistry or biochemistry. Similarly, there was a surprising lack of directional shifts in the soil microbial community as a whole or any change at all in microbial functional groups associated with CH4 consumption or N2O cycling in any treatment. Thus, it appears that while warming and increased nutrient availability have strongly affected the plant community over the last 16 years, the belowground ecosystem has not yet responded. This resistance of the soil ecosystem has resulted in limited changes in GHG fluxes in response to the experimental treatments.
Resumo:
Cryosols are permafrost-affected soils whose genesis is dominated by cryogenic processes, resulting in unique macromorphologies, micromorphologies, thermal characteristics, and physical and chemical properties. In addition, these soils are carbon sinks, storing high amounts of organic carbon collected for thousands of years. In the Canadian soil classification, the Cryosolic Order includes mineral and organic soils that have both cryogenic properties and permafrost within 1 or 2 m of the soil surface. This soil order is divided into Turbic, Static and Organic great groups on the basis of the soil materials (mineral or organic), cryogenic properties and depth to permafrost. The great groups are subdivided into subgroups on the basis of soil development and the resulting diagnostic soil horizons. Cryosols are commonly associated with the presence of ground ice in the subsoil. This causes serious problems when areas containing these soils are used for agriculture and construction projects (such as roads, town sites and airstrips). Therefore, where Cryosols have high ice content, it is especially important either to avoid these activities or to use farming and construction methods that maintain the negative thermal balance.
Resumo:
The paper reports specific mineralogical and geochemical characteristics of deposits from local depressions of the Derugin Basin. They were formed in an environment with periodic changes from oxic to anoxic conditions and show evidence for presence of hydrogen sulfide in bottom waters. Deposits of this type can be considered as a modern model for ancient ore-bearing black shale associations. Compared with typical metalliferous black shale sequences, which are characterized by high contents of organic matter, the sediments described here are depleted in elements of the organophilic association (Mo, Ni, Cu, Zn, V, and U), but have higher Mn contents.
Resumo:
Mineral and chemical alterations of basalts were studied in the upper part of the ocean crust using data of deep-sea drilling from D/S Glomar Challenger in the main structures of the Pacific floor. Extraction of majority of chemical elements (including heavy metals) from basalts results mainly from their interaction with heated sea water. As a result mineralized hydrothermal solutions are formed. On entering the ocean they influence greatly on ocean sedimentation and ore formation.
Resumo:
Major and rare earth element (REE) data for basalts from Holes 483, 483B, and 485A of DSDP Leg 65, East Pacific Rise, mouth of the Gulf of California, support a simple fractional crystallization model for the genesis of rocks from this suite. The petrography and mineral chemistry (presented in detail elsewhere) provide no evidence for magma mixing, but rather a simple multistage cooling process. Based on its lowest TiO2 content (0.88%), FeO*/MgO ratio (0.95 with total Fe as FeO), and Mg# (100 Mg/Mg + Fe" = 70), sample 483-17-2-(78-83) has been selected as the most primitive primary magma of the samples analyzed. This is supported by the REE data which show this sample has the lowest total REE content, a La/Sm_cn (chondrite-normalized) = 0.36, and Eu/Sm_cn = 1.05. Because other samples analyzed have higher SiO2, lower Mg#, and a negative Eu anomaly (Eu/Sm_cn as low as 0.89), they are most likely derivative magmas. Wright-Doherty and trace element modelling support fractional crystallization of 14.1% plagioclase (An88), 6.7% olivine (Fo86), and 4.7% clinopyroxene (Wo41En49Fs10) from 483-17-2-(78-83) to form the least differentiated sample with Mg# = 63. The La/Sm_cn of this derivative magma is almost identical to the parent magma (0.35 to 0.36), but the other samples have higher La/Sm_cn (0.45 to 0.51), more total REE, and lower Mg# (60 to 56). Both Wright-Doherty and trace element modelling indicate that the primary magma chosen cannot produce these more evolved samples. For the major elements, the TiO2 and P2O5 are too low in the calculated versus the observed (1.38 to 1.90; 0.11 to 0.17, respectively, for example). Rayleigh fractionation calculates a lower La/Sm_cn and requires about 60% crystal removal versus 40% for the Wright-Doherty. These more evolved samples must be derived from a parent magma different from the one selected here and, unfortunately, not sampled in this study. A magma formed by a smaller degree of partial melting with slightly more residual clinopyroxene left in the mantle than for sample 483-17-2-(78-83) is required.
Resumo:
Magmatic rocks of the Shatsky Rise form two groups replacing one another in time. The earlier ferrotholeiites enriched in potassium compose large massifs. Trachybasalts form seamounts and neotectonic ridges. Composition of volcanites indicates that two sources of magmatism took part in their formation: a depleted source characteristic of basalts of mid-ocean ridges and a ''plume'' source participating in formation of oceanic plateaus.
Resumo:
Results of study of bottom sediments near Iceland and on the Jan Mayen Island are reported. It was found that in recent sediments chemical elements are mainly associated with pyro- and volcanoclastics. In some areas adjusted to deep-seated faults ancient iron-manganese crusts and sediments occur. They are rich in Ni, Co, V, Cu, Mo, Cd and other elements associated with endogenic matter.
Resumo:
The monograph highlights extensive materials collected during expeditions of P.P. Shirshov Institute of Oceanology. We consider facial conditions of nodule formation, regularities of their distribution, stratigraphic position, petrography, mineral composition, textures, geochemistry of nodules and hosting sediments. Origin of iron-manganese nodules in the Pacific Ocean is considered as well.
Resumo:
The oceans absorb and store a significant portion of anthropogenic CO2 emissions, but large uncertainties remain in the quantification of this sink. An improved assessment of the present and future oceanic carbon sink is therefore necessary to provide recommendations for long-term global carbon cycle and climate policies. The formation of North Atlantic Deep Water (NADW) is a unique fast track for transporting anthropogenic CO2 into the ocean's interior, making the deep waters rich in anthropogenic carbon. Thus the Atlantic is presently estimated to hold 38% of the oceanic anthropogenic CO2 inventory, although its volume makes up only 25% of the world ocean. Here we analyze the inventory change of anthropogenic CO2 in the Atlantic between 1997 and 2003 and its relationship to NADW formation. For the whole region between 20°S and 65°N the inventory amounts to 32.5 ± 9.5 Petagram carbon (Pg C) in 1997 and increases up to 36.0 ± 10.5 Pg C in 2003. This result is quite similar to earlier studies. Moreover, the overall increase of anthropogenic carbon is in close agreement with the expected change due to rising atmospheric CO2 levels of 1.69% a?1. On the other hand, when considering the subpolar region only, the results demonstrate that the recent weakening in the formation of Labrador Sea Water, a component of NADW, has already led to a decrease of the anthropogenic carbon inventory in this water mass. As a consequence, the overall inventory for the total water column in the western subpolar North Atlantic increased only by 2% between 1997 and 2003, much less than the 11% that would be expected from the increase in atmospheric CO2 levels.