892 resultados para Characterizing Network Traffic
Resumo:
This paper represents VoIP shaping analyses in devices that apply the three Quality of Service techniques – IntServ, DiffServ and RSVP. The results show queue management and packet stream shaping based on simulation of the three mostly demanded services – VoIP, LAN emulation and transaction exchange. Special attention is paid to the VoIP as the most demanding service for real time communication.
Resumo:
The traffic carried by core optical networks grows at a steady but remarkable pace of 30-40% year-over-year. Optical transmissions and networking advancements continue to satisfy the traffic requirements by delivering the content over the network infrastructure in a cost and energy efficient manner. Such core optical networks serve the information traffic demands in a dynamic way, in response to requirements for shifting of traffics demands, both temporally (day/night) and spatially (business district/residential). However as we are approaching fundamental spectral efficiency limits of singlemode fibers, the scientific community is pursuing recently the development of an innovative, all-optical network architecture introducing the spatial degree of freedom when designing/operating future transport networks. Spacedivision- multiplexing through the use of bundled single mode fibers, and/or multi-core fibers and/or few-mode fibers can offer up to 100-fold capacity increase in future optical networks. The EU INSPACE project is working on the development of a complete spatial-spectral flexible optical networking solution, offering the network ultra-high capacity, flexibility and energy efficiency required to meet the challenges of delivering exponentially growing traffic demands in the internet over the next twenty years. In this paper we will present the motivation and main research activities of the INSPACE consortium towards the realization of the overall project solution. © 2014 Copyright SPIE.
Resumo:
The paper presents a new network-flow interpretation of Łukasiewicz’s logic based on models with an increased effectiveness. The obtained results show that the presented network-flow models principally may work for multivalue logics with more than three states of the variables i.e. with a finite set of states in the interval from 0 to 1. The described models give the opportunity to formulate various logical functions. If the results from a given model that are contained in the obtained values of the arc flow functions are used as input data for other models then it is possible in Łukasiewicz’s logic to interpret successfully other sophisticated logical structures. The obtained models allow a research of Łukasiewicz’s logic with specific effective methods of the network-flow programming. It is possible successfully to use the specific peculiarities and the results pertaining to the function ‘traffic capacity of the network arcs’. Based on the introduced network-flow approach it is possible to interpret other multivalue logics – of E.Post, of L.Brauer, of Kolmogorov, etc.
Resumo:
In this study, we showed various approachs implemented in Artificial Neural Networks for network resources management and Internet congestion control. Through a training process, Neural Networks can determine nonlinear relationships in a data set by associating the corresponding outputs to input patterns. Therefore, the application of these networks to Traffic Engineering can help achieve its general objective: “intelligent” agents or systems capable of adapting dataflow according to available resources. In this article, we analyze the opportunity and feasibility to apply Artificial Neural Networks to a number of tasks related to Traffic Engineering. In previous sections, we present the basics of each one of these disciplines, which are associated to Artificial Intelligence and Computer Networks respectively.
Resumo:
The popular technologies Wi-Fi and WiMAX for realization of WLAN and WMAN respectively are much different, but they could compliment each other providing competitive wireless access for voice traffic. The article develops the idea of WLAN/WMAN (Wi-Fi/WiMAX) integration. WiMAX is offering a backup for the traffic overflowing from Wi-Fi cells located into the WiMAX cell. Overflow process is improved by proposed rearrangement control algorithm applied to the Wi-Fi voice calls. There are also proposed analytical models for system throughput evaluation and verification of the effectiveness using WMAN as a backup for WLAN overflow traffic and the proposed call rearrangement algorithm as well.
Resumo:
IEEE 802.15.4 networks has the features of low data rate and low power consumption. It is a strong candidate technique for wireless sensor networks and can find many applications to smart grid. However, due to the low network and energy capacities it is critical to maximize the bandwidth and energy efficiencies of 802.15.4 networks. In this paper we propose an adaptive data transmission scheme with CSMA/CA access control, for applications which may have heavy traffic loads such as smart grids. The adaptive access control is simple to implement. Its compatibility with legacy 802.15.4 devices can be maintained. Simulation results demonstrate the effectiveness of the proposed scheme with largely improved bandwidth and power efficiency. © 2013 International Information Institute.
Resumo:
This paper is concerned with long-term (20+ years) forecasting of broadband traffic in next-generation networks. Such long-term approach requires going beyond extrapolations of past traffic data while facing high uncertainty in predicting the future developments and facing the fact that, in 20 years, the current network technologies and architectures will be obsolete. Thus, "order of magnitude" upper bounds of upstream and downstream traffic are deemed to be good enough to facilitate such long-term forecasting. These bounds can be obtained by evaluating the limits of human sighting and assuming that these limits will be achieved by future services or, alternatively, by considering the contents transferred by bandwidth-demanding applications such as those using embedded interactive 3D video streaming. The traffic upper bounds are a good indication of the peak values and, subsequently, also of the future network capacity demands. Furthermore, the main drivers of traffic growth including multimedia as well as non-multimedia applications are identified. New disruptive applications and services are explored that can make good use of the large bandwidth provided by next-generation networks. The results can be used to identify monetization opportunities of future services and to map potential revenues for network operators. © 2014 The Author(s).
Resumo:
In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analysing network failures caused by hardware faults or overload. There network reaction was modelled as rerouting of traffic away from failed or congested elements. Here we model network reaction to congestion on much shorter time scales when the input traffic rate through congested routes is reduced. As an example we consider the Internet where local mismatch between demand and capacity results in traffic losses. We describe the onset of congestion as a phase transition characterised by strong, albeit relatively short-lived, fluctuations of losses caused by noise in input traffic and exacerbated by the heterogeneous nature of the network manifested in a power-law load distribution. The fluctuations may result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © 2013 IEEE.
Resumo:
Next-generation networks are likely to be non-uniform in all their aspects, including number of lightpaths carried per link, number of wavelengths per link, number of fibres per link, asymmetry of the links, and traffic flows. Routing and wavelength allocation models generally assume that the optical network is uniform and that the number of wavelengths per link is a constant. In practice however, some nodes and links carry heavy traffic and additional wavelengths are needed in those links. We study a wavelength-routed optical network based on the UK JANET topology where traffic demands between nodes are assumed to be non-uniform. We investigate how network capacity can be increased by locating congested links and suggesting cost-effective upgrades. Different traffic demands patterns, hop distances, number of wavelengths per link, and routing algorithms are considered. Numerical results show that a 95% increase in network capacity is possible by overlaying fibre on just 5% of existing links. We conclude that non-uniform traffic allocation can be beneficial to localize traffic in nodes and links deep in the network core and provisioning of additional resources there can efficiently and cost-effectively increase network capacity. © 2013 IEEE.
Resumo:
The Internet has become a universal communication network tool. It has evolved from a platform that supports best-effort traffic to one that now carries different traffic types including those involving continuous media with quality of service (QoS) requirements. As more services are delivered over the Internet, we face increasing risk to their availability given that malicious attacks on those Internet services continue to increase. Several networks have witnessed denial of service (DoS) and distributed denial of service (DDoS) attacks over the past few years which have disrupted QoS of network services, thereby violating the Service Level Agreement (SLA) between the client and the Internet Service Provider (ISP). Hence DoS or DDoS attacks are major threats to network QoS. In this paper we survey techniques and solutions that have been deployed to thwart DoS and DDoS attacks and we evaluate them in terms of their impact on network QoS for Internet services. We also present vulnerabilities that can be exploited for QoS protocols and also affect QoS if exploited. In addition, we also highlight challenges that still need to be addressed to achieve end-to-end QoS with recently proposed DoS/DDoS solutions. © 2010 John Wiley & Sons, Ltd.
Resumo:
Traffic incidents are non-recurring events that can cause a temporary reduction in roadway capacity. They have been recognized as a major contributor to traffic congestion on our nation’s highway systems. To alleviate their impacts on capacity, automatic incident detection (AID) has been applied as an incident management strategy to reduce the total incident duration. AID relies on an algorithm to identify the occurrence of incidents by analyzing real-time traffic data collected from surveillance detectors. Significant research has been performed to develop AID algorithms for incident detection on freeways; however, similar research on major arterial streets remains largely at the initial stage of development and testing. This dissertation research aims to identify design strategies for the deployment of an Artificial Neural Network (ANN) based AID algorithm for major arterial streets. A section of the US-1 corridor in Miami-Dade County, Florida was coded in the CORSIM microscopic simulation model to generate data for both model calibration and validation. To better capture the relationship between the traffic data and the corresponding incident status, Discrete Wavelet Transform (DWT) and data normalization were applied to the simulated data. Multiple ANN models were then developed for different detector configurations, historical data usage, and the selection of traffic flow parameters. To assess the performance of different design alternatives, the model outputs were compared based on both detection rate (DR) and false alarm rate (FAR). The results show that the best models were able to achieve a high DR of between 90% and 95%, a mean time to detect (MTTD) of 55-85 seconds, and a FAR below 4%. The results also show that a detector configuration including only the mid-block and upstream detectors performs almost as well as one that also includes a downstream detector. In addition, DWT was found to be able to improve model performance, and the use of historical data from previous time cycles improved the detection rate. Speed was found to have the most significant impact on the detection rate, while volume was found to contribute the least. The results from this research provide useful insights on the design of AID for arterial street applications.
Resumo:
Traffic incidents are a major source of traffic congestion on freeways. Freeway traffic diversion using pre-planned alternate routes has been used as a strategy to reduce traffic delays due to major traffic incidents. However, it is not always beneficial to divert traffic when an incident occurs. Route diversion may adversely impact traffic on the alternate routes and may not result in an overall benefit. This dissertation research attempts to apply Artificial Neural Network (ANN) and Support Vector Regression (SVR) techniques to predict the percent of delay reduction from route diversion to help determine whether traffic should be diverted under given conditions. The DYNASMART-P mesoscopic traffic simulation model was applied to generate simulated data that were used to develop the ANN and SVR models. A sample network that comes with the DYNASMART-P package was used as the base simulation network. A combination of different levels of incident duration, capacity lost, percent of drivers diverted, VMS (variable message sign) messaging duration, and network congestion was simulated to represent different incident scenarios. The resulting percent of delay reduction, average speed, and queue length from each scenario were extracted from the simulation output. The ANN and SVR models were then calibrated for percent of delay reduction as a function of all of the simulated input and output variables. The results show that both the calibrated ANN and SVR models, when applied to the same location used to generate the calibration data, were able to predict delay reduction with a relatively high accuracy in terms of mean square error (MSE) and regression correlation. It was also found that the performance of the ANN model was superior to that of the SVR model. Likewise, when the models were applied to a new location, only the ANN model could produce comparatively good delay reduction predictions under high network congestion level.
Resumo:
Global connectivity, for anyone, at anyplace, at anytime, to provide high-speed, high-quality, and reliable communication channels for mobile devices, is now becoming a reality. The credit mainly goes to the recent technological advances in wireless communications comprised of a wide range of technologies, services, and applications to fulfill the particular needs of end-users in different deployment scenarios (Wi-Fi, WiMAX, and 3G/4G cellular systems). In such a heterogeneous wireless environment, one of the key ingredients to provide efficient ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS) based, are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, and call-dropping and/or blocking probabilities. This research presented a novel approach for the design and implementation of a multi-criteria vertical handoff algorithm for heterogeneous wireless networks. Several parallel Fuzzy Logic Controllers were utilized in combination with different types of ranking algorithms and metric weighting schemes to implement two major modules: the first module estimated the necessity of handoff, and the other module was developed to select the best network as the target of handoff. Simulations based on different traffic classes, utilizing various types of wireless networks were carried out by implementing a wireless test-bed inspired by the concept of Rudimentary Network Emulator (RUNE). Simulation results indicated that the proposed scheme provided better performance in terms of minimizing the unnecessary handoffs, call dropping, and call blocking and handoff blocking probabilities. When subjected to Conversational traffic and compared against the RSS-based reference algorithm, the proposed scheme, utilizing the FTOPSIS ranking algorithm, was able to reduce the average outage probability of MSs moving with high speeds by 17%, new call blocking probability by 22%, the handoff blocking probability by 16%, and the average handoff rate by 40%. The significant reduction in the resulted handoff rate provides MS with efficient power consumption, and more available battery life. These percentages indicated a higher probability of guaranteed session continuity and quality of the currently utilized service, resulting in higher user satisfaction levels.
Resumo:
Annual Average Daily Traffic (AADT) is a critical input to many transportation analyses. By definition, AADT is the average 24-hour volume at a highway location over a full year. Traditionally, AADT is estimated using a mix of permanent and temporary traffic counts. Because field collection of traffic counts is expensive, it is usually done for only the major roads, thus leaving most of the local roads without any AADT information. However, AADTs are needed for local roads for many applications. For example, AADTs are used by state Departments of Transportation (DOTs) to calculate the crash rates of all local roads in order to identify the top five percent of hazardous locations for annual reporting to the U.S. DOT. ^ This dissertation develops a new method for estimating AADTs for local roads using travel demand modeling. A major component of the new method involves a parcel-level trip generation model that estimates the trips generated by each parcel. The model uses the tax parcel data together with the trip generation rates and equations provided by the ITE Trip Generation Report. The generated trips are then distributed to existing traffic count sites using a parcel-level trip distribution gravity model. The all-or-nothing assignment method is then used to assign the trips onto the roadway network to estimate the final AADTs. The entire process was implemented in the Cube demand modeling system with extensive spatial data processing using ArcGIS. ^ To evaluate the performance of the new method, data from several study areas in Broward County in Florida were used. The estimated AADTs were compared with those from two existing methods using actual traffic counts as the ground truths. The results show that the new method performs better than both existing methods. One limitation with the new method is that it relies on Cube which limits the number of zones to 32,000. Accordingly, a study area exceeding this limit must be partitioned into smaller areas. Because AADT estimates for roads near the boundary areas were found to be less accurate, further research could examine the best way to partition a study area to minimize the impact.^
Resumo:
Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.