990 resultados para Catalysts
Resumo:
Carbon black and titanium dioxide supported iron tetraphenylporphyrin (FeTPP/TiO2/C) catalysts for oxygen reduction reaction (ORR) were prepared by sol-gel and precipitation methods followed by a heat-treatment at temperatures of 400-1000 degrees C. The FeTPP/C and TiO2/C were also studied for comparison. The FeTPP/TiO2/C pyrolyzed at 700 degrees C exhibits significantly improved stability while maintaining high activity towards ORR in comparison with the FeTPP/C counterpart. The electrochemical study combined with XRD, XPS, and SEM/EDX analyses revealed that the appropriate dispersion of TiO2 on the surface of FeTPP/TiO2/C catalysts, which depending on heat-treatment temperature, plays a crucial role in determining the activity and stability of catalysts.
Resumo:
PdSn/C catalysts with different atomic ratios of Pd to Sn were synthesised by a NaBH4 reduction method. Electrochemical tests show that the alloy catalysts exhibit significantly higher catalytic activity and stability for formic acid electrooxidation (FAEO) than the Pd/C catalyst prepared with the same method. XRD and TEM indicate that a particle-size effect is not the main cause for the high performance. XPS confirms that Pd is modified by Sn through an electronic effect which can decrease the adsorption strength of poisonous intermediates on Pd and thus promote the FAEO greatly.
Resumo:
The size-controlled synthesis of Pd/C catalyst for formic acid electrooxidation is reported in this study. By using alcohol solvents with different chain length in the impregnation method, the sizes of Pd nanoparticles can be facilely tuned; this is attributed to the different viscosities of the solvents. The results show that a desired Pd/C catalyst with an average size of about 3 nm and a narrow size distribution is obtained when the solvent is n-butanol. The catalyst exhibits large electrochemically active surface area and high catalytic activity for formic acid electrooxidation.
Resumo:
The Pt/C electrocatalysts containing Pr6O11 nanorods were successfully prepared. By various electrochemical characterization methods, it was demonstrated that the Pr6O11 nanorods have an obviously promotive role for ethanol electrooxidation catalyzed by Pt/C. However, according to the stripping experiment, the promotive effect of Pr6O11 does not result from the easier electrooxidation of the intermediate adsorbate on Pt-Pr6O11/C than on Pt/C. It was supposed that Pr6O11 could promote a certain step in ethanol oxidation, and that the special morphology of the nanorods could further enhance the activity compared with nanoparticles.
Resumo:
In the present work, platinum nanoparticles were prepared by in situ reduction with polyethylene glycols (PEGs). The catalytic performance of Pt nanoparticles immobilized in PEGs (Pt-PEGs) is discussed for the hydrogenation of o-chloronitrobenzene (o-CNB). A high selectivity to o-chloroaniline (o-CAN) of about 99.7% was obtained with the Pt-PEGs catalysts at the complete conversion of o-CNB, which is much higher than that (83.4%) obtained over the conventional catalyst of Pt/C. The Pt nanoparticies could be immobilized in PEGs stably and recycled for four times with the same activity and selectivity. It presents a promising performance in the hydrogenation and its wide application in catalytic reactions is expected.
Resumo:
Hydrogenation of maleic anhydride (MAH) with Pd/C catalysts in supercritical carbon dioxide (scCO(2)) was investigated. The selectivity for gamma-butyrolactone (GBL) reached 97.3% in scCO(2) at 100% conversion of MAH, which was notably higher than that of 77.4% obtained in organic solvent of ethylene glycol dimethyl ether (EGDME). The particle size of Pd exhibited large influence on the reaction rate and selectivity of GBL. Higher selectivity of GBL was obtained with Pd/C catalyst of smaller Pd particle size, and the rate of GBL selectivity increase as a function of CO2 pressure was found to be significantly correlated with Pd particle size.
Resumo:
Ti-Zr-Co alloys have been fabricated and characterized, and their catalytic performance was discussed for the oxidation of cyclohexane with oxygen under solvent-free condition. The icosahedral quasicrystalline phase (I-phase)-forming ability of Ti-Zr-Co alloys with different compositions was discussed, and it was confirmed that I-phase could be formed as a dominating phase at the Ti-rich composition region from Ti53Zr27Co20 to Ti75Zr5Co20 in as-cast alloys. The composition and microstructure of Ti-Zr-Co alloys present crucial influences on its catalytic activity and selectivity in the oxidation of cyclohexane. The influences of some reaction parameters such as temperature, reaction time, and catalyst amounts were also investigated. Ti70Zr10Co20 alloy containing quasicrystal microstructure showed good catalytic performance with a 6.8% conversion of cyclohexane and 90.4% selectivity of cyclohexanol and cyclohexanone. It behaves as an efficient heterogeneous catalyst for the oxidation of cyclohexane and could be recycled five times without loss in activity and selectivity.
Resumo:
The Heck reaction of iodobenzene and methyl acrylate was investigated with CO2-philic Pd complex catalysts having fluorous ponytails and the organic base triethylamine (Et3N) in the presence of CO2 under solventless conditions at 80 degrees C. The catalysts are not soluble in the organic phase in the absence Of CO2 and the reaction occurs in a solid-liquid biphasic system. When the organic liquid mixture is pressurized by CO2, CO2 is dissolved into the organic phase and this promotes the dissolution of the I'd complex catalysts. As a result, the Heck reaction occurs homogeneously in the organic phase, which enhances the rate of reaction. This positive effect Of CO2 pressurization competes with the negative effect that the reacting species are diluted by an increasing amount of CO2 molecules dissolved. Thus, the maximum conversion appears at a CO2 pressure of around 4 MPa under the present reaction conditions. The catalysts are separated in the solid granules by depressurization and are recyclable without loss of activity after washing with n-hexane and/or water.
Resumo:
A series of novel neutral nickel complexes 4a-e bearing modified beta-ketoiminato ligands [(2,6-(Pr2C6H3)-Pr-i)N=C(R-1)CHC(2 '-R2C6H4)O]Ni(Ph)(PPh3) (4a, R-1 R-2 = H; 4b, R-1 = H, R-2 = Ph; 4c, R-1 = H, R-2 = Naphth; 4d, R-1 = CH3, R-2 = Ph; 4e, R-1 = CF3, R-2 Ph) have been synthesized and characterized. Molecular structures of 4b and 4e were further confirmed by X-ray crystallographic analysis. Activated with B(C6F5)(3), all the complexes are active for the polymerization of ethylene to branched polyethylenes. Ligand structure, i.e., substituents R-1 and R-2, greatly influences not only catalytic activity but also the molecular weight and branch content of the polyethylene produced. The phenyl-substituted complex 4b exhibits the highest activity of lip to 145 kg PE/mol(Ni)center dot h center dot atm under optimized conditions, which is about 10 times more than unsubstituted complex 4a (14.0 kg PE/mol(Ni center dot)h center dot atm). Highly branched polyethylene with 103 branches per 1000 carbon atoms has been prepared using catalyst 4e.
Resumo:
A series of amino-pyrrolide ligands (1-4a) and their derivatives aminothiophene ligand (5a), amino-indole ligand (6a) were prepared. Chromium catalysts, which were generated in situ by mixing the ligands with CrCl3(thf)(3) in toluene, were tested for ethylene polymerization. The preliminary screening results revealed that the tridentate amino-pyrrolide ligands containing soft pendant donor, 3a, 4a/CrCl3(thf)(3) systems displayed high catalytic activities towards ethylene polymerization in the presence of modified methyaluminoxane. The electronic and steric factors attached to the ligand backbone significantly affected both the catalyst activity and the polymer molecular weight. Complex 4b was obtained by the reaction of CrCl3(thf)(3) with one equivalent of the lithium salts of 4a, which was the most efficient ligand among the tested ones. The effect of polymerization parameters such as cocatalyst concentration, ethylene pressure, reaction temperature, and time on polymerization behavior were investigated in detail. The resulting polymer obtained by 4b display wax-like and possess linear structure, low molecular weight, and unimodal distribution.
Resumo:
A series of novel vanadium(III) complexes hearing heteroatoill-containing group-substituted salicylaldiminato ligands [RN=CH(ArO)]VCl2(THF)(2) (Ar = C6H4, R = C3H2NS, 2a; C7H4NS, 2c; C7H5N2, 2d; Ar = C(6)H(2)tBu(2) (2,4), R = C3H2NS, 2b) have been synthesized and characterized. Structure of complex 2c was further confirmed by X-ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a-d exhibited high catalytic activities (up to 22.8 kg polyethylene/mmolv h bar), and affording polymer with unimodal molecular weight distributions at 25-70 degrees C in the first 5-min polymerization, whereas produced bimodal molecular weight distribution polymers at 70 degrees C when polymerization time prolonged to 30 min. The catalyst structure plays an important role in controlling the molecular weight and molecular weight distribution of the resultant polymers produced in 30 min polymerization. In addition, ethylene/hexene copolymerizations with catalysts 2a-d were also explored in the presence of Et2AlCl, which leads to the high molecular weight and unimodal distributions copolymers with high comonomer incorporation.
Resumo:
Three heteroligated (salicylaldiminato)(beta-enaminoketonato)titanium complexes [3-Bu-t-2-OC6H3CH=N(C6F5)][(p-XC6H4)N=C(Bu-t)CHC(CF3)O]TiCl2 (3a: X = F, 3b: X = Cl, 3c: X = Br) were synthesized and investigated as the catalysts for ethylene polymerization and ethylene/norbornene copolymerization. In the presence of modified methylaluminoxane as a cocatalyst, these unsymmetric catalysts exhibited high activities toward ethylene polymerization, similar to their parallel parent catalysts. Furthermore, they also displayed favorable ability to efficiently incorporate norbornene into the polymer chains and produce high molecular weight copolymers under the mild conditions, though the copolymerization of ethylene with norbornene leads to relatively lower activities. The sterically open structure of the beta-enaminoketonato ligand is responsible for the high norbornene incorporation. The norbornene concentration in the polymerization medium had a profound influence on the molecular weight distribution of the resulting copolymer.
Resumo:
The copolymerizations of ethylene with polar hydroxyl monomers such as 10-undecen-1-ol, 5-hexen-1-ol and 3-buten-1-ol were investigated by the vanadium(III) catalysts bearing bidentate [N,O] ligands (1, [PhN=C(CH3)CHC(Ph)O]VCl2(THF)(2): 2, [PhN=CHC6H4O]VCl2(THF)(2); 3, [PhN=CHC(Ph)CHO]VCl2(THF)(2)). The polar monomers were pretreated by alkylaluminum before the polymerization. High catalytic activities and efficient comonomer incorporations can be easily obtained by changing monomer masking reagents and polymerization conditions in the presence of diethylaluminium chloride as a cocatalyst. The longer the spacer group, the higher the incorporation of the monomer. Under the mild conditions, the incorporation level of 10-undecen-1-ol reached 13.9 mol% in the resultant copolymers was obtained. The reactivity ratios of copolymerization (r(1) = 41.4, r(2) = 0.02, r(1)r(2) = 0.83) were evaluated by Fineman-Ross method. According to C-13 NMR spectra, polar units were located both on the main chain and at the chain end.
Resumo:
Based on the implications of a pellet experiment,we have designed and implemented a low temperature(≤90℃) approach to generate native patterned,vertically aligned ZnO nanoarrys without any templates or catalysts.This simple,economic and spontaneous patterning process offers a promising avenue for overcoming several inherent limitations of the artificial manners[1].While the purity,orientation and electrical properties of the as prepared materials allow them to be applied in various fields.
Resumo:
The asymmetric Michael addition of aldehydes to nitroolefins was investigated using L-prolinamide derivatives of 2-(2'-piperidinyl)pyridine as catalyst and a variety of phenols as co-catalyst. Extensive screening toward the effect of prolinamides, phenols, and solvents on this transformation revealed that a combination of (S)-2-(2'-piperidinyl)pyridine-derived trans-4-hydroxy-L-prolinamide 2c, (S)-1,1'-bi-2-naphthol, and dichloromethane was a promising system. This system was shown to be amenable to a rich variety of aldehydes and nitroolefins and afforded the nitroaldehyde products with excellent yield, enantiomeric excess (up to 99%) and diastereoselectivity ratio (up to 99/1), even in the case of 1 mol % catalyst loading and 1.5 equiv of aldehydes.