979 resultados para Caspase activation
Resumo:
The identification of small molecules that affect T cell activation is an important area of research. Three molecules that regulate plant growth and differentiation, but not their structurally similar analogs, were identified to enhance primary mouse CD4(+) T cell activation in conjunction with soluble anti-CD3 stimulation: Indoleacetic acid (natural plant auxin), 1-Napthaleneacetic acid (synthetic plant auxin) and 2,4-Dichlorophenoxyacetic acid (synthetic plant auxin and herbicide). These effects are distinct in comparison to Curcumin, the well known phenolic immunomodulator, which lowers T cell activation. An investigation into the mechanisms of action of the three plant growth regulators revealed a rapid induction of reactive oxygen species (ROS), mainly comprising H2O2 . In addition, these three molecules synergize with soluble anti-CD3 signaling to enhance intracellular Ca2+ concentrations Ca2+](i), leading to greater T cell activation, e.g. induction of CD25 and IL-2. Enhanced production of TNF alpha and IFN gamma by CD4+ T cells is also observed upon plant growth regulator treatment with soluble anti-CD3. Interestingly, maximal IL-2 production and CD4(+) T cell cycle progression are observed upon activation with soluble anti-CD3 and phorbol 12-myristate 13-acetate (PMA), a phorbol ester. Additionally, stimulation with PMA and Ionomcyin (a Ca2+ ionophore), which activates T cells by circumventing the TCR, and plant growth regulators also demonstrated the role of the strength of signal (SOS): T cell cycle progression is enhanced with gentle activation conditions but decreased with strong activation conditions. This study demonstrates the direct effects of three plant growth regulators on CD4(+) T cell activation and cycling. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A small-cluster approximation has been used to calculate the activation barriers for the d.c. conductivity in ionic glasses. The main emphasis of this approach is on the importance of the hitherto ignored polarization energy contribution to the total activation energy. For the first time it has been demonstrated that the d.c. conductivity activation energy can be calculated by considering ionic migration to a neighbouring vacancy in a smali cluster of ions consisting of face-sharing anion polyhedra. The activation energies from the model calculations have been compared with the experimental values in the case of highly modified lithium thioborate glasses.
Resumo:
Background: Though 293T cells are widely used for expression of proteins from transfected plasmid vectors, the molecular basis for the high-level expression is yet to be understood. We recently identified the prostate carcinoma cell line PC3 to be as efficient as 293T in protein expression. This study was undertaken to decipher the molecular basis of high-level expression in these two cell lines. Methodology/Principal Findings: In a survey of different cell lines for efficient expression of platelet-derived growth factor-B (PDGF-B), beta-galactosidase (beta-gal) and green fluorescent protein (GFP) from plasmid vectors, PC3 was found to express at 5-50-fold higher levels compared to the bone metastatic prostate carcinoma cell line PC3BM and many other cell lines. Further, the efficiency of transfection and level of expression of the reporters in PC3 were comparable to that in 293T. Comparative analyses revealed that the high level expression of the reporters in the two cell lines was due to increased translational efficiency. While phosphatidic acid (PA)-mediated activation of mTOR, as revealed by drastic reduction in reporter expression by n-butanol, primarily contributed to the high level expression in PC3, multiple pathways involving PA, PI3K/Akt and ERK1/2 appear to contribute to the abundant reporter expression in 293T. Thus the extent of translational upregulation attained through the concerted activation of mTOR by multiple pathways in 293T could be achieved through its activation primarily by the PA pathway in PC3. Conclusions/Significance: Our studies reveal that the high-level expression of proteins from plasmid vectors is effected by translational up-regulation through mTOR activation via different signaling pathways in the two cell lines and that PC3 is as efficient as 293T for recombinant protein expression. Further, PC3 offers an advantage in that the level of expression of the protein can be regulated by simple addition of n-butanol to the culture medium.
Resumo:
Intracellular pathogen sensor, NOD2, has been implicated in regulation of wide range of anti-inflammatory responses critical during development of a diverse array of inflammatory diseases; however, underlying molecular details are still imprecisely understood. In this study, we demonstrate that NOD2 programs macrophages to trigger Notch1 signaling. Signaling perturbations or genetic approaches suggest signaling integration through cross-talk between Notch1-PI3K during the NOD2-triggered expression of a multitude of immunological parameters including COX-2/PGE(2) and IL-10. NOD2 stimulation enhanced active recruitment of CSL/RBP-Jk on the COX-2 promoter in vivo. Intriguingly, nitric oxide assumes critical importance in NOD2-mediated activation of Notch1 signaling as iNOS(-/-) macrophages exhibited compromised ability to execute NOD2-triggered Notch1 signaling responses. Correlative evidence demonstrates that this mechanism operates in vivo in brain and splenocytes derived from wild type, but not from iNOS(-/-) mice. Importantly, NOD2-driven activation of the Notch1-PI3K signaling axis contributes to its capacity to impart survival of macrophages against TNF-alpha or IFN-gamma-mediated apoptosis and resolution of inflammation. Current investigation identifies Notch1-PI3K as signaling cohorts involved in the NOD2-triggered expression of a battery of genes associated with anti-inflammatory functions. These findings serve as a paradigm to understand the pathogenesis of NOD2-associated inflammatory diseases and clearly pave a way toward development of novel therapeutics.
Resumo:
The well-known linear relationship (T?S# =??H# +?, where 1 >? > 0,? > 0) between the entropy (?S#) and the enthalpy (?H#) of activation for reactions in polar liquids is investigated by using a molecular theory. An explicit derivation of this linear relation from first principles is presented for an outersphere charge transfer reaction. The derivation offers microscopic interpretation for the quantities? and?. It has also been possible to make connection with and justify the arguments of Bell put forward many years ago.
Resumo:
Triplex forming oligonucleotides (TFOs) have the potential to modulate gene expression. While most of the experiments are directed towards triplex mediated inhibition of gene expression the strategy potentially could be used for gene specific activation. In an attempt to design a strategy for gene specific activation in vivo applicable to a large number of genes we have designed a TFO based activator-target system which may be utilized in Saccharomyces cerevisiae or any other system where Gal4 protein is ectopically expressed. The total genome sequence of Saccharomyces cerevisiae and expression profiles were used to select the target genes with upstream poly (pu/py) sequences. We have utilized the paradigm of Gal4 protein and its binding site. We describe here the selection of target genes and design of hairpin-TFO including the targeting sequences containing polypurine stretch found in the upstream promoter regions of weakly expressed genes. We demonstrate, the formation of hairpin-TFO, its binding to Gal4 protein, its ability to form triplex with the target duplex in vitro, the effect of polyethylenimine on complex formation and discuss the implication on in vivo transcription activation.
Resumo:
Reactivity switching and selective activation of C-1 or C-3 in 2,3-unsaturated thioglycosides, namely, 2,3-dideoxy-1-thio-D-hex-2-enopyranosides are reported. The reactivity switching allowed activation of either C-1 or C-3, with the use of either N-iodosuccinimide (NIS)/triflic acid (TfOH) or TfOH alone. C-1 glycosylation with alcohol acceptors occurred in the presence of NIS/TfOH, without the acceptors reacting at C-3. On the other hand, reaction of 2,3-unsaturated thioglycosides with alcohols mediated by triflic acid led to transposition of C-1 ethylthio-moiety to C-3 intramolecularly, to form 3-ethylthio-glycals. Resulting glycals underwent glycosylation with alcohols to afford 3-ethylthio-2-deoxy glycosides. However, when thiol was used as an acceptor, only a stereoselective addition at C-3 resulted, so as to form C-1, C-3 dithio-substituted 2-deoxypyranosides. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated a mathematical model of the process of activation of the X chromosomes in eutherian mammals. The model assumes that the activation is brought about over some definite time interval T by the complete saturation of N receptor sites on an X chromosome by M activating molecules (or multiples of M). The probability λ of a first hit on the receptor site is considered to be very much lower than that of subsequent hits; that is, we assume strong co-operative binding. Assuming further that an incomplete saturation of receptor sites is malfunctional, we can show that for proper activation of X chromosomes in normal diploid males and females, we must have λMT ≥ 3 and 0·96 ≤ N/M ≤ 1. An extension of this analysis for the triploid cases shows that under these conditions, we cannot explain the activation of two X's if the number of activating molecules is fixed at M. This suggests that there must be two classes of triploid embryos differing from each other in a step-wise manner in the number of activating molecules. In other words, triploids with two active X chromosomes would require 2M activating molecules as opposed to M molecules in triploids with a single active X. This interpretation of the two classes of triploids would be consistent with differing imprinting histories of the parental contributions to the triploid zygote.
Resumo:
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Resumo:
We explored the effect of a novel synthetic triterpenoid compound cyano enone of methyl boswellates (CEMB) on various prostate cancer and glioma cancer cell lines. CEMB displayed concentration-dependent cytotoxic activity with submicromolar lethal dose 50% (LD(50)) values in 10 of 10 tumor cell lines tested. CEMB-induced cytotoxicity is accompanied by activation of downstream effector caspases (caspases 3 and 7) and by upstream initiator caspases involved in both the extrinsic (caspase 8) and intrinsic (caspase 9) apoptotic pathways. By using short interfering RNAs (siRNA), we show evidence that knockdown of caspase 8, DR4, Apaf-1, and Bid impairs CEMB-induced cell death. Similar to other proapoptotic synthetic triterpenoid compounds, CEMB-induced apoptosis involved endoplasmic reticulum stress, as shown by partial rescue of tumor cells by siRNA-mediated knockdown of expression of genes involved in the unfolded protein response such as IRE1 alpha, PERK, and ATF6. Altogether, our results suggest that CEMB stimulates several apoptotic pathways in cancer cells, suggesting that this compound should be evaluated further as a potential agent for cancer therapy. Mol Cancer Ther; 10(9); 1635-43. (C)2011 AACR.
Resumo:
An enantiospecific synthesis of the angular triquinane system present in the sesquiterpenes cameroonanes and silphiperfolanes has been accomplished, starting from 5-isopropenyl-2-methylcyclopent-1-ene-1-methanol [readily available in three steps from (R)-limonene] employing an intramolecular rhodium carbenoid insertion into the C-H bond of a tertiary methyl group for the construction of the triquinane system.
Resumo:
Innate immunity recognizes and resists various pathogens; however, the mechanisms regulating pathogen versus non-pathogen discrimination are still imprecisely understood. Here, we demonstrate that pathogen-specific activation of TLR2 upon infection with Mycobacterium bovis BCG, in comparison with other pathogenic microbes, including Salmonella typhimurium and Staphylococcus aureus, programs macrophages for robust up-regulation of signaling cohorts of Wnt-beta-catenin signaling. Signaling perturbations or genetic approaches suggest that infection-mediated stimulation of Wnt-beta-catenin is vital for activation of Notch1 signaling. Interestingly, inducible NOS (iNOS) activity is pivotal for TLR2-mediated activation of Wnt-beta-catenin signaling as iNOS(-/-) mice demonstrated compromised ability to trigger activation of Wnt-beta-catenin signaling as well as Notch1-mediated cellular responses. Intriguingly, TLR2-driven integration of iNOS/NO, Wnt-beta-catenin, and Notch1 signaling contributes to its capacity to regulate the battery of genes associated with T(Reg) cell lineage commitment. These findings reveal a role for differential stimulation of TLR2 in deciding the strength of Wnt-beta-catenin signaling, which together with signals from Notch1 contributes toward the modulation of a defined set of effector functions in macrophages and thus establishes a conceptual framework for the development of novel therapeutics.
Resumo:
A deep‐level transient spectroscopy (DLTS) technique is reported for determining the capture cross‐section activation energy directly. Conventionally, the capture activation energy is obtained from the temperature dependence of the capture cross section. Capture cross‐section measurement is often very doubtful due to many intrinsic errors and is more critical for nonexponential capture kinetics. The essence of this technique is to use an emission pulse to allow the defects to emit electrons and the transient signal from capture process due to a large capture barrier was analyzed, in contrast with the emission signal in conventional DLTS. This technique has been applied for determining the capture barrier for silicon‐related DX centers in AlxGa1−xAs for different AlAs mole fractions.
Resumo:
Background: Bryophyllum pinnata (B. pinnata) is a common medicinal plant used in traditional medicine of India and of other countries for curing various infections, bowel diseases, healing wounds and other ailments. However, its anticancer properties are poorly defined. In view of broad spectrum therapeutic potential of B. pinnata we designed a study to examine anti-cancer and anti-Human Papillomavirus (HPV) activities in its leaf extracts and tried to isolate its active principle. Methods: A chloroform extract derived from a bulk of botanically well-characterized pulverized B. pinnata leaves was separated using column chromatography with step-gradient of petroleum ether and ethyl acetate. Fractions were characterized for phyto-chemical compounds by TLC, HPTLC and NMR and Biological activity of the fractions were examined by MTT-based cell viability assay, Electrophoretic Mobility Shift Assay, Northern blotting and assay of apoptosis related proteins by immunoblotting in human cervical cancer cells. Results: Results showed presence of growth inhibitory activity in the crude leaf extracts with IC50 at 552 mu g/ml which resolved to fraction F4 (Petroleum Ether: Ethyl Acetate:: 50: 50) and showed IC50 at 91 mu g/ml. Investigations of anti-viral activity of the extract and its fraction revealed a specific anti-HPV activity on cervical cancer cells as evidenced by downregulation of constitutively active AP1 specific DNA binding activity and suppression of oncogenic c-Fos and c-Jun expression which was accompanied by inhibition of HPV18 transcription. In addition to inhibiting growth, fraction F4 strongly induced apoptosis as evidenced by an increased expression of the pro-apoptotic protein Bax, suppression of the anti-apoptotic molecules Bcl-2, and activation of caspase-3 and cleavage of PARP-1. Phytochemical analysis of fraction F4 by HPTLC and NMR indicated presence of activity that resembled Bryophyllin A. Conclusions: Our study therefore demonstrates presence of anticancer and anti-HPV an activity in B. pinnata leaves that can be further exploited as a potential anticancer, anti-HPV therapeutic for treatment of HPV infection and cervical cancer.