944 resultados para Casein peptides
Resumo:
We tested the possible diagnostic utility of five Taenia saginata oncosphere-derived synthetic peptides in T. solium neurocysticercosis (NC). The five peptides correspond to protein sequences with high antigenic indexes that were cloned from a T. saginata oncosphere cDNA library. The test samples consisted of cerebrospinal fluid (CSF) samples randomly collected from patients referred from Mexican and Brazilian neurological institutes. Indirect enzyme-linked immunosorbent assays (ELISA) were carried out with the peptides either unconjugated or coupled to carrier proteins, and were compared with results obtained using T. solium cyst fluid as a positive control. For active inflammatory NC, the higher sensibility (93%) and specificity (85%) was obtained with peptides HP6-2 and Ts45W-1, respectively, coupled to ovalbumin, in both Mexican and Brazilian patients. Examining the results of the individual peptide assays in combination, in some instances, improved the sensitivity to 100%.
Resumo:
In spite of all progressive efforts aiming to optimize SPPS, serious problems mainly affecting the assembly of aggregating sequences have persisted. Following the study intended to unravel the complex solvation phenomenon of peptide-resin beads, the XING and XAAAA model aggregating segments were labeled with a paramagnetic probe and studied via EPR spectroscopy. Low and high substituted resins were also comparatively used, with the X residue being Asx or Glx containing the main protecting groups used in the SPPS. Notably, the cyclo-hexyl group used for Asp and Glu residues in Boc-chemistry induced greater chain immobilization than its tert-butyl partner-protecting group of the Fmoc strategy. Otherwise, the most impressive peptide chain immobilization occurred when the large trytil group was used for Asn and Gln protection in Fmoc-chemistry. These surprising results thus seem to stress the possibility of the relevant influence of the amino-acid side chain protecting groups in the overall peptide synthesis yield. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Micro-scale (sub-pmol) isolation and sequence determination of three peptides from the venom of the solitary spider wasp Cyphononyx dorsalis is described. We isolated two novel peptides Cd-125 and Cd-146 and a known peptide Thr(6)-bradykinin from only two venom sacs of solitary spider wasp Cyphononyx dorsalis without bioassay-guided fractionation. but instead guided by MALDI-TOF MS. The MALDI-TOF MS analysis of each fraction showed the purity and molecular weight of the components, which led to the isolation of the peptides virtually without loss of sample amount. The sequences of the novel peptides Cd-125 (Asp-Thr-Ala-Arg-Leu-Lys-Trp-His) and Cd-146 (Ser-Glu-Thr-Gly-Asn-Thr-Val-Thr-Val-Lys-Gly-Phe-Ser-Pro-Leu-Arg) were determined by Edman degradation together with mass spectrometry. and finally corroborated by solid-phase synthesis. The known peptide Thr(6)-bradykinin (Arg-Pro-Pro-Gly-Phe-Thr-Pro-Phe-Arg) was identified by comparison with the synthetic authentic specimen. This is the first example for any kinins to be found in Pompilidae wasp venoms. The procedure reported here can be applicable to studies on many other components of solitary wasp venoms with limited sample availability. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger-fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane em,, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behaviour. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P 1-30 was estimated by measuring the permeability PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the PEGs of different pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St 11 conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation. (c) 2005 Wiley Periodicals, Inc.
Resumo:
A method incorporating nested collision-induced dissociation/post-source decay (CID/PSD) combined with endopeptidase digestion is described as an approach to determine the sequence of N-terminally modified peptides. The information from immonium and related ions observed in the CID/PSD spectrum was used for the selection of a suitable endopeptidase for the digestion of peptides. Rapid and reliable assignment of peptide sequence was performed by the comparison of CID/PSD spectra of both intact and endopeptidese-digested peptide fragments, since the assignments of the observed fragment ions to either N- or C-terminal ions can thus be carried out unambiguously. This nested CID/PSD method was applied to the sequence determination of two peptides from the solitary wasps Anoplius samariensis and Batozonellus maculifrons (pompilid wasps), which could not be sequenced by the Edman method due to N-terminal modification. Copyright (C) 2002 John Wiley Sons, Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Quinolones constitute a family of compounds with a potent antibiotic activity. The enzyme DNA gyrase, responsible for the replication and transcription processes in DNA of bacteria, is involved in the mechanism of action of these drugs. In this sense, it is believed that quinolones stabilize the so-called 'cleavable complex' formed by DNA and gyrase, but the whole process is still far from being understood at the molecular level. This information is crucial in order to design new biological active products. As an approach to the problem, we have designed and synthesized low molecular weight peptide mimics of DNA gyrase. These peptides correspond to sequences of the subunit A of the enzyme from Escherichia coli, that include the quinolone resistance-determining region (positions 75-92) and a segment containing the catalytic Tyr-122 (positions 116-130). The peptide mimic of the non-mutated enzyme binds to ciprofloxin (CFX) only when DNA and Mg2+ were present (Kd = 1.6 × 10 -6 m), a result previously found with DNA gyrase. On the other hand, binding was reduced when mutations of Ser-83 to Leu-83 and Asp-87 to Asn-87 were introduced, a double change previously found in the subunit A of DNA gyrase from several CFX-resistant clinical isolates of E. coli. These results suggest that synthetic peptides designed in a similar way to that described here can be used as mimics of gyrases (topoisomerases) in order to study the binding of the quinolone to the enzyme-DNA complex as well as the mechanism of action of these antibiotics. Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Caseins comprise make up about 80% of the total protein content of milk and present polymorphism with change in the amino acid sequence. Within this abundance of proteins, kappa-casein is noteworthy, since it has been associated with differences in milk yield, composition and processing. The objective of this study was to observe the existence of polymorphism in the kappa-casein gene in female buffaloes. For this purpose, blood samples from 115 female buffaloes, collected with vacutainer by needle punctionure of the jugular vein, were used. for genomic DNA extraction was done from blood samples. The PCR-RFLP and SSCP techniques demonstrated that the studied animals were monomorphic for the kappa-casein gene. Only allele B was observed in these animals, which was present in homozygosis. Therefore, it was not possible to quantify the gene action on milk yield and its constituents. The monomorphism observed in the population studied would allow the development of a method to identify mixtures of cow and buffalo milk in mozzarella cheese production, especially because, in cattle, the kappa-casein gene is polymorphic. Copyright by the Brazilian Society of Genetics.
Resumo:
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A2 (PLA2s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing Mr ∼ 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2s from snake venoms, MTX-I belonging to Asp49 PLA2 class, enzymatically active, and MTX-II to Lys49 PLA2s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA2 and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA2s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA2 proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Mozzarella cheese is traditionally prepared from bubaline (Bubalus bubalis) milk, but product adulteration occurs mainly by addition of or full substitution by bovine milk. The aim of this study was to show the usefulnes of molecular markers to identify the admixture of bovine milk to bubaline milk during the manufacturing process of mozzarella cheese. Samples of mozzarella cheese were produced by adding seven different concentrations of bovine milk: 0%, 1%, 2%, 5%, 8%, 12% and 100%. DNA extracted from somatic cells found in cheese were submitted to PCR-RFLP analysis of casein genes: α-s1-CN - CSN1S1 that encompasses 954 bp from exon VII to intron IX (AluI and HinfI), β-CN - CSN2 including 495 bp of exon VII (Hae III and HinfI), and κ-CN - CSN3, encompassing 373 bp of exon IV (AluI and HindIII). Our results indicate that Hae III-RFLP of CSN2exon VII can be used as a molecular marker to detect the presence of bovine milk in mozzarella cheese. Copyright © 2008, Sociedade Brasileira de Genética.
Resumo:
Four novel peptides were isolated from the venoms of the solitary eumenine wasps Eumenes rubrofemoratus and Eumenes fraterculus. Their sequences were determined by MALDI-TOF/TOF (matrix assisted laser desorption/ionization time-of-flight mass spectrometry) analysis, Edman degradation and solid-phase synthesis. Two of them, eumenitin-R (LNLKGLIKKVASLLN) and eumenitin-F (LNLKGLFKKVASLLT), are highly homologous to eumenitin, an antimicrobial peptide from a solitary eumenine wasp, whereas the other two, EMP-ER (FDIMGLIKKVAGAL-NH 2) and EMP-EF (FDVMGIIKKIAGAL-NH 2), are similar to eumenine mastoparan-AF (EMP-AF), a mast cell degranulating peptide from a solitary eumenine wasp. These sequences have the characteristic features of linear cationic cytolytic peptides; rich in hydrophobic and basic amino acids with no disulfide bond, and accordingly, they can be predicted to adopt an amphipathic α-helix secondary structure. In fact, the CD (circular dichroism) spectra of these peptides showed significant α-helical conformation content in the presence of TFE (trifluoroethanol), SDS (sodium dodecylsulfate) and asolectin vesicles. In the biological evaluation, all the peptides exhibited a significant broad-spectrum antimicrobial activity, and moderate mast cell degranulation and leishmanicidal activities, but showed virtually no hemolytic activity. © 2011 Elsevier Ltd.
Resumo:
When searching for prospective novel peptides, it is difficult to determine the biological activity of a peptide based only on its sequence. The trial and error approach is generally laborious, expensive and time consuming due to the large number of different experimental setups required to cover a reasonable number of biological assays. To simulate a virtual model for Hymenoptera insects, 166 peptides were selected from the venoms and hemolymphs of wasps, bees and ants and applied to a mathematical model of multivariate analysis, with nine different chemometric components: GRAVY, aliphaticity index, number of disulfide bonds, total residues, net charge, pI value, Boman index, percentage of alpha helix, and flexibility prediction. Principal component analysis (PCA) with non-linear iterative projections by alternating least-squares (NIPALS) algorithm was performed, without including any information about the biological activity of the peptides. This analysis permitted the grouping of peptides in a way that strongly correlated to the biological function of the peptides. Six different groupings were observed, which seemed to correspond to the following groups: chemotactic peptides, mastoparans, tachykinins, kinins, antibiotic peptides, and a group of long peptides with one or two disulfide bonds and with biological activities that are not yet clearly defined. The partial overlap between the mastoparans group and the chemotactic peptides, tachykinins, kinins and antibiotic peptides in the PCA score plot may be used to explain the frequent reports in the literature about the multifunctionality of some of these peptides. The mathematical model used in the present investigation can be used to predict the biological activities of novel peptides in this system, and it may also be easily applied to other biological systems. © 2011 Elsevier Inc.