937 resultados para Carrying Loads


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cerium-carrying solution was developed so as to aprtially fill the open porosity of Al2O3/SiC/C/MgAl2O4 based refractory lining microstructure used in torpedo ladles, thereby enhancing wear resistance. The protection mchanism was cleared up and introduced from the impregnation technique using a cerium-carrying solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this in vitro study was to use strain gauge (SG) analysis to compare the effects of the implant-abutment joint, the coping, and the location of load on strain distribution in the bone around implants supporting 3-unit fixed partial prostheses. Three external hexagon (EH) implants and 3 internal hexagon (IH) implants were inserted into 2 polyurethane blocks. Microunit abutments were screwed onto their respective implant groups. Machined cobalt-chromium copings and plastic copings were screwed onto the abutments, which received standard wax patterns. The wax patterns were cast in a cobalt-chromium alloy (n = 5): group 1 = EH/machined. group 2 = EH/plastic, group 3 = IH/machined, and group 4 = IH/plastic. Four SGs were bonded onto the surface of the block tangentially to the implants. Each metallic structure was screwed onto the abutments and an axial load of 30 kg was applied at 5 predetermined points. The magnitude of microstrain on each SG was recorded in units of microstrain (mu epsilon). The data were analyzed using 3-factor repeated measures analysis of variance and a Tukey test (alpha = 0.05). The results showed statistically significant differences for the type of implant-abutment joint, loading point, and interaction at the implant-abutment joint/loading point. The IH connection showed higher microstrain values than the EH connection. It was concluded that the type of coping did not interfere in the magnitude of microstrain, but the implant/abutment joint and axial loading location influenced this magnitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a scaled structure (model or replica) is used to predict the response of a full-size compound (prototype), the model geometric dimensions should relate to the corresponding prototype dimensions by a single scaling factor. However, owing to manufacturing technical restrictions, this condition cannot be accomplished for some of the dimensions in real structures. Accordingly, the distorted geometry will not comply with the overall geometric scaling factor, infringing the Pi theorem requirements for complete dynamic similarity. In the present study, a method which takes geometrical distortions into account is introduced, leading to a model similar to the prototype. As a means to infer the performance of this method, three analytical problems of structures subjected to dynamic loads are analysed. It is shown that the replica developed applying this technique is able to accurately predict the full-size structure behaviour even when the studied models have some of their dimensions severely distorted. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a generalized two-species population dynamic model and analytically solve it for the amensalism and commensalism ecological interactions. These two-species models can be simplified to a one-species model with a time dependent extrinsic growth factor. With a one-species model with an effective carrying capacity one is able to retrieve the steady state solutions of the previous one-species model. The equivalence obtained between the effective carrying capacity and the extrinsic growth factor is complete only for a particular case, the Gompertz model. Here we unveil important aspects of sigmoid growth curves, which are relevant to growth processes and population dynamics. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of Structured Treatment Interruption (STI) in peripheral blood mononuclear cell (PBMC) proviral reservoirs in 41 highly active antiretroviral therapy (HAART)-treated viremic individuals at baseline and 12 weeks after STI was determined using quantitative PCR (qPCR). Viral load increased 0.7 log(10) and CD4 decreased 97.5 cells/mm(3) after 12 weeks. A total of 28 of the 41 individuals showed an increased proviral load, 19 with a statistically significant increase above 10%. An increase in active viral replication is an important factor in the replenishment of the proviral reservoir even for short time periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Recent studies have shown an important reduction of joint overload during locomotion in elderly women with knee osteoarthritis (OA) after short- term use of minimalist shoes. Our aim is to investigate the chronic effect of inexpensive and minimalist footwear on the clinical and functional aspects of OA and gait biomechanics of elderly women with knee OA. Methods/Design: Fifty-six elderly women with knee OA grade 2 or 3 (Kellgren and Lawrence) are randomized into blocks and allocated to either the intervention group, which will use flexible, non-heeled shoes-Moleca (R)-for six months for at least six hours daily, or the control group, which could not use these shoes. Neither group is undergoing physical therapy treatment throughout the intervention period. Moleca (R) is a women's double canvas, flexible, flat walking shoe without heels, with a 5-mm anti-slip rubber sole and a 3-mm internal wedge of ethylene vinyl acetate. Both groups will be followed for six months and will be assessed at baseline condition, after three months, and after six months (end of intervention). All the assessments will be performed by a physiotherapist that is blind to the group allocation. The primary outcome is the pain Western Ontario and McMaster Universities Osteoarthritis (WOMAC) score. The secondary outcomes are global WOMAC score; joint stiffness and disability WOMAC scores; knee pain with a visual analogue scale; walking distance in the six-minute walk test; Lequesne score; amount and frequency (number of days) of paracetamol (500 mg) intake over six months; knee adduction moment during gait; global medical assessment score; and global patient auto-assessment score. At baseline, all patients receive a diary to record the hours of daily use of the footwear intervention; every two weeks, the same physiotherapist makes phone calls to all patients in order to verify adherence to treatment. The statistical analysis will be based on intention to treat analysis, as well as general linear models of analysis of variance for repeated measure to detect treatment-time interactions (alpha = 5%). Discussion: This is the first randomized, clinical trial protocol to assess the chronic effect of minimalist footwear on the clinical and functional aspects and gait biomechanics of elderly women with knee osteoarthritis. We expect that the use of Moleca (R) shoes for six months will provide pain relief, reduction of the knee adduction moment when walking, and improve joint function in elderly women with knee OA, and that the treatment, thus, can be considered another inexpensive and easy-to-use option for conservative OA treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Questo progetto di ricerca, è stato sviluppato per studiare le caratteristiche anatomofunzionali che definiscono l’articolazione del gomito, ed in modo articolare la presenza dell’angolazione valga che origina dalla diversa orientazione degli assi meccanici dell’avambraccio e del braccio e, denominata in letteratura come carrying angle. L’obiettivo principale di questo lavoro - meglio espresso nei diversi capitoli - è stato, quello di identificare un nuovo approccio di misura per la stima di questo angolo, utilizzabile sia per gli studi di biomeccanica articolare, che per gli studi di analisi del movimento per l’arto superiore. Il primo obiettivo è stato quello di scegliere un algoritmo di calcolo che rispettasse le caratteristiche dell’articolazione, ed in modo particolare abile a minimizzare gli errori introdotti sia nella fase di acquisizione dei punti di repere anatomici, che in quella legata alla predizione del movimento di flesso-estensione, con un modello matematico. Per questo motivo abbiamo dovuto realizzare una serie di misure in un primo tempo su due cadaveri di arto superiore, poi, seguendo le regole classiche per la validazione dell’approccio metodologico adottato, si sono realizzate misure in-vivo, prima in massima estensione e poi durante il movimento. Inizialmente abbiamo pensato di comparare le misure lineari relative alle ampiezze del braccio (ampiezza tra l’epicondilo laterale e mediale) e dell’avambraccio (ampiezza tra lo stiloide ulnare e radiale) con quelle ottenute mediante un antropometro; successivamente dopo aver verificato la ripetibilità tra i diversi operatori nell’ acquisizione dei punti di repere anatomici con il digitalizzatore Faro Arm, abbiamo comparato le misure ottenute relative al carrying angle con quelle di un goniometro standard, classicamente utilizzato nella pratica clinica per la definizione dei range di movimento dell’arto superiore. Infine, considerando la bontà delle misure ottenute, abbiamo riproposto tale metodologia con stumenti stereofotogrammetrici per l’analisi del movimento (VICON System), ottenendo la stessa stabilit`a nell’andamento del carrying angle in funzione della flessione, sia come riportato dagli studi in letteratura, sia come riscontrato nel nostro studio in-vitro. In conclusione, questo lavoro di ricerca ha evidenziato (sia per i risultati ottenuti, che per la elevata numerosità dei soggetti testati), come gli esseri umani presentino una grande variabilità individuale nel valore di questo angolo, e di come questo possa aiutare per la corretta definizione di un modello 3-D dell’arto superiore. Pertanto, gli studi futuri sulla biomeccanica dell’arto superiore dovrebbero includere sempre la valutazione di questa misura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slender and lighter footbridges are becoming more and more popular to meet the transportation demand and the aesthetical requirements of the modern society. The widespread presence of such particular structures has become possible thanks to the availability of new, lightweight and still capable of carrying heavy loads material . Therefore, these kind of structure, are particularly sensitive to vibration serviceability problems, especially induced by human activities. As a consequence, it has been imperative to study the dynamic behaviour of such slender pedestrian bridges in order to define their modal characteristics. As an alternative to a Finite Element Analysis to find natural frequencies, damping and mode shape, a so-called Operational Modal Analysis is a valid tool to obtain these parameters through an ambient vibration test. This work provides a useful insight into the Operational Modal Analysis technique and It reports the investigation of the CEME Skywalk, a pedestrian bridge located at the University of British Columbia, in Vancouver, Canada. Furthermore, human-induced vibration tests have been performed and the dynamic characteristics derived with these tests have been compared with the ones from the ambient vibration tests. The effect of the dynamic properties of the two buildings supporting the CEME Skywalk on the dynamic behaviour of the bridge has been also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research work carried out in focusing a novel multiphase-multilevel ac motor drive system much suitable for low-voltage high-current power applications. In specific, six-phase asymmetrical induction motor with open-end stator winding configuration, fed from four standard two-level three-phase voltage source inverters (VSIs). Proposed synchronous reference frame control algorithm shares the total dc source power among the 4 VSIs in each switching cycle with three degree of freedom. Precisely, first degree of freedom concerns with the current sharing between two three-phase stator windings. Based on modified multilevel space vector pulse width modulation shares the voltage between each single VSIs of two three-phase stator windings with second and third degree of freedom, having proper multilevel output waveforms. Complete model of whole ac motor drive based on three-phase space vector decomposition approach was developed in PLECS - numerical simulation software working in MATLAB environment. Proposed synchronous reference control algorithm was framed in MATLAB with modified multilevel space vector pulse width modulator. The effectiveness of the entire ac motor drives system was tested. Simulation results are given in detail to show symmetrical and asymmetrical, power sharing conditions. Furthermore, the three degree of freedom are exploited to investigate fault tolerant capabilities in post-fault conditions. Complete set of simulation results are provided when one, two and three VSIs are faulty. Hardware prototype model of quad-inverter was implemented with two passive three-phase open-winding loads using two TMS320F2812 DSP controllers. Developed McBSP (multi-channel buffered serial port) communication algorithm able to control the four VSIs for PWM communication and synchronization. Open-loop control scheme based on inverse three-phase decomposition approach was developed to control entire quad-inverter configuration and tested with balanced and unbalanced operating conditions with simplified PWM techniques. Both simulation and experimental results are always in good agreement with theoretical developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of skeletal loading conditions in vivo and their relationship to the health of bone tissues, remain an open question. Computational modeling of the musculoskeletal system is the only practicable method providing a valuable approach to muscle and joint loading analyses, although crucial shortcomings limit the translation process of computational methods into the orthopedic and neurological practice. A growing attention focused on subject-specific modeling, particularly when pathological musculoskeletal conditions need to be studied. Nevertheless, subject-specific data cannot be always collected in the research and clinical practice, and there is a lack of efficient methods and frameworks for building models and incorporating them in simulations of motion. The overall aim of the present PhD thesis was to introduce improvements to the state-of-the-art musculoskeletal modeling for the prediction of physiological muscle and joint loads during motion. A threefold goal was articulated as follows: (i) develop state-of-the art subject-specific models and analyze skeletal load predictions; (ii) analyze the sensitivity of model predictions to relevant musculotendon model parameters and kinematic uncertainties; (iii) design an efficient software framework simplifying the effort-intensive phases of subject-specific modeling pre-processing. The first goal underlined the relevance of subject-specific musculoskeletal modeling to determine physiological skeletal loads during gait, corroborating the choice of full subject-specific modeling for the analyses of pathological conditions. The second goal characterized the sensitivity of skeletal load predictions to major musculotendon parameters and kinematic uncertainties, and robust probabilistic methods were applied for methodological and clinical purposes. The last goal created an efficient software framework for subject-specific modeling and simulation, which is practical, user friendly and effort effective. Future research development aims at the implementation of more accurate models describing lower-limb joint mechanics and musculotendon paths, and the assessment of an overall scenario of the crucial model parameters affecting the skeletal load predictions through probabilistic modeling.