998 resultados para Carbonic acid
Resumo:
The water soluble carbodiimide mediated condensation of dipeptides of the general form Gly-X was carried out in the presence of mono- and poly-nucleotides. The observed yield of the tetrapeptide was found to be higher for peptide-nucleotide system of higher interaction specificity following mainly the anticodon-amino acid relationship (Basu, H.S. & Podder, S.K., 1981, Ind. J. Biochem. Biophys.,19, 251-253). The yield of the condensation product of L-peptide was more because of its higher interaction specificity. The extent of the racemization during the condensation of Gly-L-Phe, Gly-L-Tyr and Gly-D-Phe was found to be dependent on the specificity of the interaction -the higher the specificity, the lesser the racemization. The product formed was shown to have a catalytic effect on the condensation reaction. These data thus provide a mechanism showing how the specific interaction between amino acids/dipeptides and nucleic acids could lead to the formation of the lsquoprimitiversquo translation machinery.
Lipid hydroperoxides : Effects of tocopherols and ascorbic acid on their formation and decomposition
Resumo:
Cupric complex of isonicotinic acid hydrazide inhibits DNA synthesis by avian myloblastosis virus reverse transcriptase. This inhibition occurs in the presence of either ribonucleotide or deoxyribonucleotide templates. The inhibition of reverse transcriptase by cupric-INH complex is considerably reduced when stored or proteolytically cleaved enzyme was used in the reaction. The complex also inhibits the reverse transciptase-associated RNase H activity. The cupric-isonicotinic acid hydrazide complex cleaves pBR 322 from I DNA into smaller molecules in the presence or absence of reverse transcriptase-associated endonuclease. However, in the presence of the enzyme the DNA is cleaved to a greater extent.
Resumo:
The hexahydrate of a 1:1 complex between L-histidyl-L-serine and glycyl-L-glutamic acid crystallizes in space group P1 with a = 4.706(1), b= 8.578(2), c= 16.521(3) ÅA; α= 85.9(1), β= 89.7(1)°, = 77.4(1). The crystal structure, solved by direct methods, has been refined to an R value of 0.046 for 2150 observed reflections. The two peptide molecules in the structure have somewhat extended conformations. The unlike molecules aggregate into separate alternating layers. Each layer is stabilized by hydrogen bonded head-to-tail sequences as well as sequences of hydrogen bonds involving peptide groups. The arrangement of molecules in each layer is similar to one of the plausible idealized arrangements of L-alanyl-L-alanine worked out from simple geometrical considerations. Adjacent layers in the structure are held together by interactions involving side chains as well as water molecules. The water structure observed in the complex provides a good model, at atomic resolution, for that in protein crystals. An interesting feature of the crystal structure is the existence of two water channels in the interfaces between adjacent peptide layers.
Resumo:
Bacteriocin-producing lactic acid bacteria and their isolated peptide bacteriocins are of value to control pathogens and spoiling microorganisms in foods and feed. Nisin is the only bacteriocin that is commonly accepted as a food preservative and has a broad spectrum of activity against Gram-positive organisms including spore forming bacteria. In this study nisin induction was studied from two perspectives, induction from inside of the cell and selection of nisin inducible strains with increased nisin induction sensitivity. The results showed that a mutation in the nisin precursor transporter NisT rendered L. lactis incapable of nisin secretion and lead to nisin accumulation inside the cells. Intracellular proteolytic activity could cleave the N-terminal leader peptide of nisin precursor, resulting in active nisin in the cells. Using a nisin sensitive GFP bioassay it could be shown, that the active intracellular nisin could function as an inducer without any detectable release from the cells. The results suggested that nisin can be inserted into the cytoplasmic membrane from inside the cell and activate NisK. This model of two-component regulation may be a general mechanism of how amphiphilic signals activate the histidine kinase sensor and would represent a novel way for a signal transduction pathway to recognize its signal. In addition, nisin induction was studied through the isolation of natural mutants of the GFPuv nisin bioassay strain L. lactis LAC275 using fl uorescence-activated cell sorting (FACS). The isolated mutant strains represent second generation of GFPuv bioassay strains which can allow the detection of nisin at lower levels. The applied aspect of this thesis was focused on the potential of bacteriocins in chicken farming. One aim was to study nisin as a potential growth promoter in chicken feed. Therefore, the lactic acid bacteria of chicken crop and the nisin sensitivity of the isolated strains were tested. It was found that in the crop Lactobacillus reuteri, L. salivarius and L. crispatus were the dominating bacteria and variation in nisin resistance level of these strains was found. This suggested that nisin may be used as growth promoter without wiping out the dominating bacterial species in the crop. As the isolated lactobacilli may serve as bacteria promoting chicken health or reducing zoonoosis and bacteriocin production is one property associated with probiotics, the isolated strains were screened for bacteriocin activity against the pathogen Campylobacter jejuni. The results showed that many of the isolated L. salivarius strains could inhibit the growth of C. jejuni. The bacteriocin of the L. salivarius LAB47 strain, with the strongest activity, was further characterized. Salivaricin 47 is heat-stable and active in pH range 3 to 8, and the molecular mass was estimated to be approximately 3.2 kDa based on tricine SDS-PAGE analysis.
Resumo:
Gibberellic acid (GA3) induced a marked elongation of 2.5-centimeter shoot tips of Cuscuta chinensis Lamk. cultured in vitro. In terms of the absolute amount of elongation, this growth may be the largest reported for an isolated plant system. The response to hormone was dependent on an exogenous carbohydrate supply. The hormone-stimulated growth was due to both cell division and cell elongation. The growth response progressively decreased if GA3 was given at increasingly later times after culturing, but the decreased growth response could be restored by the application of indole-3-acetic acid (IAA) to the apex. Explants deprived of GA3 gradually lost their ability to transport IAA basipetally, but this ability was also restored by auxin application. The observations are explained on the basis that: (a) the growth of Cuscuta shoot tip in vitro requires, at least, both an auxin and a gibberellin; and (b) in the absence of gibberellin the cultured shoot tip explants lose the ability to produce and/or transport auxin.
Resumo:
C6HvN30, orthorhombic, P2~2121, a = 14.915 (15), b=ll.400 (10), c=3.835 (5) A, Din= 1"417 (7), De= 1"395 g cm -3 and Z=4. The structure was refined by the least-squares method to an R of 0.072 for 699 observed reflexions. The angle between the mean planes of the pyridine ring and the acid hydrazide moiety is 18.1 °. The molecules are held together in the crystal by a network of N-H...N hydrogen bonds.
Resumo:
The activity of glutamine synthetase fromAspergillus niger was significantly lowered under conditions of citric acid fermentation. The intracellular pH of the organism as determined by bromophenol blue dye distribution and fluorescein diacetate uptake methods was relatively constant between 6•0–6•5, when the pH of the external medium was varied between 2•3–7•0.Aspergillus niger glutamine synthetase was rapidly inactivated under acidic pH conditions and Mn2+ ions partially protected the enzyme against this inactivation. Mn2+-dependent glutamine synthetase activity was higher at acidic pH (6•0) compared to Mg2+-supported activity. While the concentration of Mg2+ required to optimally activate glutamine synthetase at pH 6•0 was very high (≥ 50 mM), Mn2+ was effective at 4 mM. Higher concentrations of Mn2+ were inhibitory. The inhibition of both Mn2+ and Mg2+-dependent reactions by citrate, 2-oxoglutarate and ATP were probably due to their ability to chelate divalent ions rather than as regulatory molecules. This suggestion was supported by the observation that a metal ion chelator, EDTA also produced similar effects. Of the end-products of the pathway, only histidine, carbamyl phosphate, AMP and ADP inhibitedAspergillus niger glutamine synthetase. The inhibitions were more pronounced when Mn2+ was the metal ion activator and greater inhibition was observed at lower pH values. These results permit us to postulate that glutamine synthesis may be markedly inhibited when the fungus is grown under conditions suitable for citric acid production and this block may result in delinking carbon and nitrogen metabolism leading to acidogenesis.
Resumo:
Malonic acid is shown to undergo an interesting phase transition at 360 K when the two non-equivalent cyclic hydrogen-bonded dimers present in the low-temperature phase become equivalent.
Resumo:
CsHaN205, PL a = 6.438 (2), b = 7.486 (3), c = 8.048 (4)A, a = 72.2(1), fl = 80.8(1), y = 76.4 (1) °, D m = 1.65 (1) (flotation), D c = 1.64 Mg m -3, Z = 2. Final R = 0.095 for 1205 observed reflections. The molecule assumes the sterically least favourable conformation with the side chain carboxyl group staggered between the a-carboxyl group and the N atom attached to C '~. The ureido group takes part in two specific interactions involving two nearly parallel hydrogen bonds in one and two convergent hydrogen bonds in the other.