985 resultados para Cao, Xueqin, ca. 1717-1763.
Resumo:
Bioactive SiO2-CaO-P2O5 gel (BAG) nanoparticles with 40 nm in diameter were synthesized by the sol-gel route and further modified via the ring-opening polymerization of lactide on the surface of particles. Surface modified BAG (mBAG) was introduced in poly(L-lactide) (PLLA) matrix as bioactive filler. The dispersibility of mBAG in PLLA matrix was much higher than that of rough BAG particles. Tensile strength of the mBAG/PLLA composite could be increased to 61.2 MPa at 2 wt% filler content from 53.4 MPa for pure PLLA. The variation of moduli of the BAG/PLLA and mBAG/PLLA composites always showed an enhancement tendency with the increasing content of filler loading. The SEM photographs of the fracture surfaces showed that mBAG could be homogeneously dispersed in the PLLA matrix, and the corrugated deformation could absorb the rupture energy effectively during the breaking of materials. In vitro bioactivity tests showed that both BAG and mBAG particles could endow the composites with ability of the calcium sediment in SBF, but the surface modification of BAG particles could weaken this capability to some extent. Biocompatibility tests showed that both BAG and mBAG particles could facilitate the attachment and proliferation of the marrow cells on the surface of the composite.
Resumo:
One-dimensional SrAl2O4:Eu2+, Dy3+ fibers were fabricated by a simple electrospinning combined with sol-gel process. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and photoluminescence were used to characterize the fibers. The results show that the phase structure of SrAl2O4:Eu2+, Dy3+ belongs to a monoclinic one, the composite fibers and fibers calcined at high temperature remain the original one-dimensional texture, and the SrAl2O4:Eu2+, Dy3+ was a green emission. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
M2B5O9X: Re(M = Ca, Sr, Ba; X = Cl, Br; Re = Eu, Th) phosphors were synthesized via solid state method. The products were characterized with X-ray powder diffraction and luminescence spectrometer. The luminescent properties as well. as the influences of the matrix composition and other doping ions on the luminescence of the rare earth ions of the co-doped phosphors were investigated. The coexistence of Eu3+, Eu2+ and Th3+ were observed in these matrices. The phenomenon may be explained by the electron transfer theory. The sensitization of Ce3+ ion improves the intensity of emission of Eu2+, and Tb3+. The competition between electron transfer among conjugate rare earth ions and energy migration might be the reasons for the observation. We predict a novel trichromatic phosphor co-doped with Eu3+ Tb3+ in M2B5O9X.
Resumo:
Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts, H-2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y2O3), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr2O7 (R=La, Ce, Nd, Gd), CeO2-YSZ, RMeAl11O19 (R=La, Nd; Me=Mg, Ca, Sr) and LaPO4. The concept of double-ceramic-layer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.
Resumo:
A simple and efficient method has been established for the selective synthesis of mesoporous and nanorod CeVO4 with different precursors by sonochemical method. CeVO4 nanorod can be simply synthesized by ultrasound irradiation of Ce(NO3)(3) and NH4VO3 in aqueous solution without any surfactant or template. While mesoporous CeVO4 with high specific surface area can be prepared with Ce(NO3)(3), V2O5 and NaOH in the same way. Mesoporous CeVO4 has a specific surface area of 122 m(2) g(-1) and an average pore size of 5.2 nm; CeVO4 nanorods have a diameter of about 5 nm, and a length of 100-150 nm. The ultrasound irradiation and ammonia in the reactive solution are two key factors in the formation of such rod-like products. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and differential thermal analyses (DTA), UV/vis absorption spectroscopy and Brunauer-Emmett-Teller (BET) were applied for characterization of the as-prepared products.
Resumo:
用数学模型法研究了细胞间液中 Gd( )对 Ca( )物种的影响 ,并利用人工神经网络方法估算配合物稳定常数 .结果表明 ,细胞间液中 Ca( )物种分布受 Gd( )总浓度变化的影响 .当 Gd( )总浓度为其在细胞间液中的本底浓度时 ,Ca( )主要以自由 Ca( )离子 ( 71 .0 % ) ,[Ca( HCO3) ]( 9.5 % )和 [Ca( Lac) ]( 6.0 % )等物种存在 .随着 Gd( )浓度的提高 ,Gd( )主要与 Ca( )竞争磷酸根及碳酸根 ,并有竞争生物小分子配体趋势 ,从而导致 Ca( )物种随 Gd( )浓度变化重新分布
Resumo:
The selective extraction of yttrium front heavy lanthanide by liquid-liquid extraction using CA-100 in the presence of the complexing agent, such as EDTA, DTPA, and HEDTA was investigated. The extraction of heavy lanthanide in the present of the complexing agent was Suppressed when compared to that of Y because of the masking effect, but the selective extraction of Y was enhanced. All complexing agents formed 1: 1 complex with rare earth elements (RE), and only free rare earth ions could take part in the extraction. The condition for separation was obtained by exploring the effects of the complexing agent concentration, the extractant concentration, pH and the equilibration time on the extraction of the heavy rare earth elements.
Resumo:
Molybdenum trioxide nanobelts and prism-like particles with good crystallinity and high surface areas have been prepared by a facile hydrothermal method, and the morphology could be controlled by using different inorganic salts, such as KNO3, Ca(NO3)(2), La(NO3)(3), etc. The possible growth mechanism of molybdenum trioxide prism-like particles is discussed on the basis of the presence of HI and the modification of metal cations. The as-prepared nanomaterials are characterized by means of powder X-ray diffraction (PXRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and ultraviolet and visible spectroscopy (UV-vis). TEM and HRTEM micrographs show that the molybdenum trioxide nanobelts and prism-like particles have a relatively high degree of crystallinity and uniformity. BET specific surface areas of the as-prepared molybdenum trioxide nanocrystals are 67-79 m(2)g(-1). XPS analysis indicates that the hexavalent molybdenum is predominant in the nanocrystals. UV-vis spectra reveal that the direct band gap energy of the annealed molybdenum trioxide prism-like particles shows a pronounced blue shift compared to that of bulk MoO3 powder.
Resumo:
The selective separation of Y from yttrium solution containing small heavy rare earth (HRE) impurities (Ho, Er, Tm, Yb, Lu) by liquid-liquid extraction using CA-100 in the presence of a water-soluble complexing agent of ethylenediaminetetraacetic acid (EDTA) was experimentally studied at 298K. Experiments were carried Out in two feeds, Feed-I: [RE](f) = 4.94 x 10(-3) M, Y = 98.5%, HRE (Ho, Er, Tm, Yb, Lu) = 1.5%; Feed-II: [RE](f) = 4.94 x 10(-3) M, Y = 99.9%, HRE (Ho, Er, Tm, Yb, Lu) = 0.1%, as a function of equilibrium pH (pH(eq)), the concentration ratio of [EDTA]:[HRE impurities]. It was shown that the extraction of HRE in the presence of EDTA was suppressed when compared to that of Y because of the masking effect, while the selective extraction of Y was enhanced and the separation factors increased to maximum at appropriate condition for Feed-I: Y/Ho = 1.53, Y/Er = 3.09, Y/Tm = 5.61, Y/Yb = 12.04, Y/Lu = 27.51 at pH 4.37 and [EDTA]:[HRE impurities] = 4: 1, for Feed-II: Y/Ho = 1.32, Y/Er = 1.91, Y/Tm = 2.00, Y/Yb = 3.05, Y/Lu = 3.33 at pH 4.42 and [EDTA]: [HRE impurities] = 8:1. The separation and purification of Y by this method was discussed.
Resumo:
An efficient cathode NaCl/Ca/Al used to improve the performance of organic light-emitting devices (OLEDs) was reported. Standard NM-bis(1-naphthyl)-NAP-diphenyl-1,1' biphenyl 4,4'-dimaine (NPB)/tris-(8-hydroxyquinoline) aluminum (Alq(3)) devices with NaCl/Ca/Al cathode showed dramatically enhanced electroluminescent (EL) efficiency. A power efficiency of 4.6 lm/W was obtained for OLEDs with 2 nm of NaCl and 10 nm of Ca, which is much higher than 2.0 lm/W, 3.1 lm/W, 2.1 lm/ W and 3.6 lm/W in devices using, respectively, the LiF (1 nm)/Al, LiF (1 nm)/Ca (10 nm)/Al, Ca (10 nm)/Al and NaCl (2 nm)/ Al cathodes. The investigation of the electron injection in electron-only devices indicates that the utilization of the NaCl/Ca/Al cathode substantially enhances the electron injection current, which in case of OLEDs leads to the improvement of the brightness and efficiency.
Resumo:
The phase diagram of a cetyltrimethyl ammonium bromide( CTAB)/n-butanol/n-octane/KNO3-Mg( NO3)(2) system was drawn. Nanoparticles of Eu2+-doped KMgF3 were prepared from the quaternary microemulsions of cetyltrimethyl ammonium bromide(CTAB), n-butanol, n-octane and water. The X-ray diffraction(XRD) patterns were indexed to a pure KMgF3 cubic phase. The environmental scanning electron microscopic (ESEM) images show the presence of spherical Eu2+-doped KMgF3 nanoparticles with a diameter of ca. 20 nm. The emission of KMgF3: Eu2+ nanoparticles peaks at 360 mn. The excitation band was observed at 250 nm with a blue shift of ca. 70 nm compared with that of KMgF3: Eu2+ single crystal. The preparation method of nano-KMgF3: Eu2+/PMMA composite films was inquired into.
Resumo:
A multiphase model of metal ion speciation in human interstitial fluid was constructed and the effect of Pr(III) on Ca(II) speciation was studied. Results show that free Ca2+, [Ca(HCO3)], and [Ca(Lac)] are the main species of Ca(II). Because of the competition of Pr(III) for ligands with Ca(II), the percentages of free Ca2+, [Ca(Lac)], and [Ca(His)(Thr)H-3] increase gradually and the percentages of CaHPO4(aq) and [Ca(Cit)(His)H-2] decrease gradually with the increase in the total concentration of Pr(III). However, the percentages of [Ca(HCO3)] and CaCO3(aq) first increase and then begin to decrease when the total concentration of Pr(III) exceeds 6.070 x 10(-4) M.
Resumo:
The extraction of zinc(II) from an aqueous chloride medium has been studied using mixtures of sec-nonylphenoxy acetic acid (CA-100) and bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex 272). The results demonstrate that zinc ion is extracted into heptane as ZnA(2).2HA with CA-100, ZnL2.2HL with Cyanex 272, and ZnA(2)L(2)H(2) with synergistic mixture. The equilibrium constants of the these species have been calculated and extraction mechanisms have been proposed. Thermodynamic parameters of the extraction process were determined by the temperature coefficient of extractability. The synergistic system enhances the extraction efficiency of zinc(II) and also improves the selectivity between zinc(II) and cadmium(II).
Resumo:
Poly (6-caprolactone) (PCL) and poly (L-lactide) (PLA) were prepared by ring-opening Polymerization catalyzed by organic amino calcium catalysts (Ca/PO and Ca/EO) which were prepared by reacting calcium ammoniate Ca(NH3)(6) with propylene oxide and ethylene oxide, respectively. The catalysts exhibited high activity and the ring-opening polymerization behaved a quasi-living characteristic. Based on the Fr-IR spectra and the calcium contents of the catalysts, and based on the H-1 NMR end-group analysis of the low molecular weight PCL prepared using catalysts Ca/PO and Ca/EO, it was proposed that the catalysts have the structure of NH2-Ca-O-CH(CH3)(2) and NH2-CaO-CH2CH3 for Ca/PO and Ca/EO, respectively. The ring-opening polymerization of CL and LA follows a coordination-insertion mechanism and the active site is the Ca-O bond.