988 resultados para Calcium (cellular)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The immune response caused by Mycobacterium leprae is a risk factor for the development of oxidative stress (OS) in leprosy patients. This study aimed to assess OS in leprosy patients before the use of a multidrug therapy. Methods We evaluated the nitric oxide (NO) concentration; antioxidant capacity; levels of malondialdehyde, methemoglobin and reduced glutathione; and the activity of catalase and superoxide dismutase (SOD) in leprosy patients. Results We observed lower SOD activity in these leprosy patients; however, the NO levels and antioxidant capacity were increased. Conclusions The infectious process in response to M. leprae could primarily be responsible for the OS observed in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO: Mutações em genes envolvidos na formação do coração e anomalias em qualquer etapa deste processo causam frequentemente malformações cardíacas, que representam o tipo mais comum de defeitos em neonatais, afetando cerca de 1% dos nascimentos por ano. Assim, estima-se que 20 milhões de pessoas sejam portadoras de um defeito cardíaco congénito. O coração da Drosophila melanogaster (mosca-da-fruta), denominado vaso dorsal, é um órgão relativamente simples que actua como uma bomba muscular, contraindo automaticamente para permitir a circulação da hemolinfa através do corpo. A formação do vaso dorsal na mosca é muito semelhante ao desenvolvimento do coração em vertebrados, representando por isso, um poderoso modelo para estudar a rede de genes e os padrões regulatórios relacionados com o desenvolvimento deste órgão. Anteriormente, nós identificámos um gene em Drosophila, darhgef10, fortemente expresso no coração em desenvolvimento e cuja deleção induz anormalidades cardíacas subtis mas prevalentes. Os mutantes para darhgef10 são viáveis e férteis no ambiente controlado de laboratório. Este trabalho teve como objectivos caracterizar fenotipicamente os mutantes nulos para darhgef10, determinar a localização subcelular da proteína dArhgef10 e investigar a base celular subjacente ao defeito no alinhamento dos cardioblastos observado nos mutantes. Os nossos resultados revelaram que a deleção de darhgef10 provoca uma severa redução da viabilidade, sem no entanto comprometer o tempo de desenvolvimento e a longevidade. Por outro lado, o aumento da expressão de darhgef10 em músculos, glândulas salivares e no disco imaginal do olho afeta drasticamente a integridade destes tecidos. A expressão ectópica de darhgef10 in vitro e in vivo revelou que a proteína está localiza no citoplasma com enriquecimento junto à membrana celular, com associação à actina F. Live imaging de embriões mutantes para darhgef10 revelou que os defeitos observados no coração podem estar associados a um defeito na adesão dos músculos alary e/ou das células pericardiais ao vaso dorsal. O homólogo humano de darhgef10, ARHGEF10, também é expresso no coração e está associação a uma maior susceptibilidade para a ocorrência de acidentes vasculares cerebrais aterotrombóticos, sugerindo que o que aprendemos sobre darhgef10 em Drosophila pode ter implicações do ponto de vista clínico para a saúde humana. ----------------------------- ABSTRACT: Mutations in genes controlling heart development and abnormalities in any of its steps frequently cause cardiac malformations, the most common type of birth defects in humans, affecting nearly 1% of births per year. Hence around 20 million adults are expected to live with a congenital heart defect. The Drosophila melanogaster heart, called dorsal vessel, is a relatively simple organ that acts as a muscular pump contracting automatically to allow the circulation of hemolymph. Drosophila heart formation shares many similarities with heart development in vertebrates providing a powerful system to study gene networks and regulatory pathways involved in heart development. We have previously identified a Drosophila gene, darhgef10, which is strongly expressed in the developing heart and when deleted, leads to flies with highly prevalent yet subtle heart abnormalities, compatible with unchallenged life in the laboratory. Our aims were to phenotypically characterize homozygous null darhgef10 mutants, characterize the subcellular localization of dArhgef10 and to study the cellular basis of the misaligned cardioblasts defect. We found that about half of darhgef10 mutants die during development. However, the survivors surprisingly have a nearly normal developmental time, adult locomotor behavior and total lifespan. Detection of transgene-derived dArhgef10 protein in vitro and in vivo using custom antibodies revealed a cytosolic protein slightly enriched in the cellular membranes and associated with F-actin. Tissue-specific darhgef10 expression disrupts the normal morphology of developing muscles, salivary glands and the eye. Live imaging of darhgef10 mutant embryos revealed that heart defect could be caused by a reduced capacity of attachment of pericardial cells and/or alary muscle to dorsal vessel. The human homolog of darhgef10 is also expressed in the heart and is a susceptibility gene for atherothrombotic stroke, suggesting that what we learn about the function of this gene and its phenotypes in Drosophila could have implications to human health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calcium carbonate biomineralization is a self-assembly process that has been studied to be applied in the biomedical field to encapsulate biomolecules. Advantages of engineering mineral capsules include improved drug loading efficiencies and protection against external environment. However, common production methods result in heterogeneous capsules and subject biomolecules to heat and vibration which cause irreversible damage. To overcome these issues, a microfluidic device was designed, manufactured and tested in terms of selectivity for water and oil to produce a W/O/W emulsion. During the development of this work there was one critical challenge: the selective functionalization in closed microfluidic channels. Wet chemical oxidation of PDMS with 1M NaOH, confirmed by FTIR, followed by adsorption of polyelectrolytes - PDADMAC/PSS - confirmed by UV-Vis and AFM results, render the surface of PDMS hydrophilic. UV-Vis spectroscopy also confirmed that this modification did not affect PDMS optical properties, making possible to monitor fluids and droplets. More important, with this approach PDMS remains hydrophilic over time. However, due to equipment constrains selectivity in microchannels was not achieved. Therefore, emulsion studies took place with conventional methods. Several systems were tried, with promising results achieved with CaCO3 in-situ precipitation, without the use of polymers or magnesium. This mineral stabilizes oil droplets in water, but not in air due to incomplete capsule formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochemical and hematimetric indicators of inflammation and cell damage were correlated with bilirubin and hepatic and pancreatic enzymes in 30 chronic male alcoholics admitted into psychiatric hospital for detoxification and treatment of alcoholism. Aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltransferase, alkaline phosphatase, and total bilirubin were altered, respectively, in 90%, 63%, 87%, 23% and 23% of the cases. None of the indicators of inflammation (lactic dehydrogenase, altered in 16% of the cases; alpha-1 globulin, 24%; alpha-2 globulin, 88%; leucocyte counts, 28%) was correlated with alterations of bilirubin or liver enzymes. Lactic dehydrogenase was poorly sensitive for detection of hepatocytic or muscular damage. Alterations of alpha-globulins seemed to have been due more to alcohol metabolism-induced increase of lipoproteins than to inflammation. Among indicators of cell damage, serum iron, increased in 40% of the cases, seemed to be related to liver damage while creatine phosphokinase, increased in 84% of the cases, related to muscle damage. Hyperamylasemia was found in 20% of the cases and significantly correlated with levels of bilirubin, alkaline phosphatase and gamma-glutamyltransferase. It was indicated that injuries of liver, pancreas, salivary glands, and muscle occurred in asymptomatic or oligosymptomatic chronic alcoholics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors would like to thank the financial support from the NovoNordiskFoundation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fields of murundus (FM) are wetlands that provide numerous ecosystem services. The objectives of this study were to evaluate the chemical [organic carbon (OC), P, K+, Ca2+, Mg2+, Al3+ and H+Al] and physical [texture and bulk density (Bd)] soil attributes and calculate the organic matter (OM) and nutrient stock (P, Ca, Mg, and K) in soils of FM located in the Guapore River basin in Mato Grosso. Thirty-six sampling points were selected, and soil samples were collected from two environments: the murundu and plain area surrounding (PAS). At each sampling point, mini trenches of 0.5 × 0.5 × 0.4 m were opened and disturbed and undisturbed soil samples were collected at depths of 0-0.1, 0.1-0.2, and 0.2-0.4 m. In the Principal Component Analysis the variables H+Al (49%) and OM (4%) were associated with the F1 component and sand content (47%) with the F2 component. The FM had lower pH values and higher concentrations of K+, P, and H+Al than PAS at all depths (p < 0.05). Additionally, FM stocked up to 433, 360, 205, and 11 kg ha-1 of Ca, Mg, K, and P, respectively, for up to a depth of 0.2 m. The murundu stored two times more K and three times more P than that in the PAS. Our results show that the FM has high sand content and Bd greater than 1.5 Mg m-3, high acidity, low OC content, and low nutrient concentrations. Thus, special care must be taken to preserve FM such that human intervention does not trigger environmental imbalances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scaffolds are porous three-dimensional supports, designed to mimic the extracellular environment and remain temporarily integrated into the host tissue while stimulating, at the molecular level, specific cellular responses to each type of body tissues. The major goal of the research work entertained herein was to study the microstructure of scaffolds made from chitosan (Ch), blends of chitosan and sodium alginate (Ch/NaAlg), blends of chitosan, sodium alginate and calcium chloride (Ch/NaAlg/CaCl2) and blends of chitosan, sodium alginate and hydroxyapatite (Ch/NaAlg/HA). Scaffolds possessing ideal physicochemical properties facilitate cell proliferation and greatly increase the rate of recovery of a damaged organ tissue. Using CT three-dimensional images of the scaffolds, it was observed that all scaffolds had a porosity in the range 64%-92%, a radius of maximum pore occurrence in the range 95m-260m and a permeability in the range 1×10-10-18×10-10 m2. From the results obtained, the scaffolds based on Ch, Ch/NaAlg and Ch/NaAlg/CaCl2 would be most appropriate both for the growth of osteoid and for bone tissue regeneration, while the scaffold made with a blend of Ch/NaAlg/HA, by possessing larger pores size, might be used as a support for fibrovascular tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical and computational models play an essential role in understanding the cellular metabolism. They are used as platforms to integrate current knowledge on a biological system and to systematically test and predict the effect of manipulations to such systems. The recent advances in genome sequencing techniques have facilitated the reconstruction of genome-scale metabolic networks for a wide variety of organisms from microbes to human cells. These models have been successfully used in multiple biotechnological applications. Despite these advancements, modeling cellular metabolism still presents many challenges. The aim of this Research Topic is not only to expose and consolidate the state-of-the-art in metabolic modeling approaches, but also to push this frontier beyond the current edge through the introduction of innovative solutions. The articles presented in this e-book address some of the main challenges in the field, including the integration of different modeling formalisms, the integration of heterogeneous data sources into metabolic models, explicit representation of other biological processes during phenotype simulation, and standardization efforts in the representation of metabolic models and simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stem cell niche organization and dynamics provide valuable cues for the development of mimetic environments that could have potential to stimulate the regenerative process. We propose the use of biodegradable biomaterials to produce closed miniaturised structures able to encapsulate different cell types or bioactive molecules. In particular, capsules are fabricated using the so-called layer-by-layer technology, where the consecutive (nano-sized) layers are well stabilized by electrostatic interactions or other weak forces. Using alginate-based spherical templates containing cells or other elements (e.g. proteins, magnetic nanoparticles, microparticles) it is possible to produce liquefied capsules that may entrap the entire cargo under mild conditions. The inclusion of liquefied micropcapsules may be used to produce hierarchical compartmentalised systems for the delivery of bioactive agents. The presence of solid microparticles inside such capsules offers adequate surface area for adherent cell attachment increasing the biological performance of these hierarchical systems, while maintain both permeability and injectability. We demonstrated that the encapsulation of distinct cell types (including mesenchymal stem cells and endothelial cells) enhances the osteogenic capability of this system, that could be useful in bone tissue engineering applications.