958 resultados para Calbuco Volcano
Resumo:
The study of pointer years of numerous tree-ring chronologies of the central Iberian Peninsula (Sierra de Guadarrama) could provide complementary information about climate variability over the last 405 yr. In total, 64 pointer years have been identified: 30 negative (representing minimum growths) and 34 positive (representing maximum growths), the most significant of these being 1601, 1963 and 1996 for the negative ones, and 1734 and 1737 for the positive ones. Given that summer precipitation was found to be the most limiting factor for the growth of Pinus in the Sierra de Guadarrama in the second half of the 20th century, it is also an explanatory factor in almost 50% of the extreme growths. Furthermore, these pointer years and intervals are not evenly distributed throughout time. Both in the first half of the 17th and in the second half of 20th, they were more frequent and more extreme and these periods are the most notable for the frequency of negative pointer years in Central Spain. The interval 1600–1602 is of special significance, being one of the most unfavourable for tree growth in the centre of Spain, with 1601 representing the minimum index in the regional chronology. We infer that this special minimum annual increase was the effect of the eruption of Huaynaputina, which occurred in Peru at the beginning of 1600 AD. This is the first time that the effects of this eruption in the tree-ring records of Southern Europe have been demonstrated.
Resumo:
A suite of ferromanganese nodules were sampled during the MVSEIS-2008 cruise aboard of the R/V Hespérides in the flanks of Meknes mud volcano (Moroccan margin, NE Central Atlantic). The nodules were collected at water depths between 750-850 m within a seabed area characterized by high acoustic backscatter values. Debris of cold water corals and hydrocarbon-derived authigenic carbonate crusts were sampled at same time. The nodules show tabular morphology, up to 20 cm in maximum diameter and 2 kg of weight, brown-reddish external color and they are internally composed by a concentric to complex arrangement of laminae. The results of X-ray diffraction analysis show that these ferromanganese nodules are essentially composed of goethite and lepidocrocite, being Mn-oxides, silicates (quartz and clay minerals) and carbonates (calcite, dolomite and siderite) accessory to occasional minerals. All the samples display micritic to micro-sparitic mosaic under the petrographic microscope which forms massive, laminated or dendritic-mottled textures. The nodules show a high abundance of Fe, minor Mn and low contents of trace metals and REEs. Mature hydrocarbons, as n-alkanes derived from marine bacterial activity, and phenanthrene have been detected in all the ferromanganese nodules analyzed. These nodules display analogous characteristics (textural, mineralogical and geochemical) to the nodules studied by González et al (2009) in the carbonate mud-mounds in the Gulf of Cadiz, offshore Iberian margin. In this way, the same preliminary genetic model proposed for these nodules might be applicable to those find in the Meknes mud volcano. Therefore, the anaerobic oxidation of hydrocarbon-rich fluids within the mud-breccia sediments in the flanks of Meknes mud volcano would induce the formation of early diagenetic Fe-(Mn) carbonate nodules. Thus, the nodules were later exhumed by the erosive action of sea bottom currents generating the replacement of ferromanganese carbonates by Fe-Mn oxy-hydroxides. Thus, the hydrocarbon-rich fluid venting from deep seated reservoirs and erosive action of bottom currents must have been essential actors, as mineralization controls, for ferromanganese nodules generation and evolution. These findings imply that this type of nodules must be considered as new product as derived from the anaerobic/aerobic oxidation of hydrocarbons in areas of active seepages.
Resumo:
The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide?Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011?2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.
Resumo:
El volcán Hecates Tholus (32.18°N, 150.28ºE; cuadrante MC-7), de unos 180 km de diámetro y 5.300 metros de altura, es el único edificio de la provincia volcánica de Elysium, en las Tierras Bajas de Marte, en el que se han descrito rasgos geomorfológicos que podrían estar causados por procesos glaciares. Además, distintos autores relacionan la red radial de canales que surcan las laderas del volcán como causadas por la fusión de un antiguo casquete glaciar en la cima del edificio, siendo éste un ejemplo más de las intensas interacciones magma-agua en esta región del planeta, cercana al antiguo océano marciano y que dieron lugar a fenómenos muy interesantes, como los terrenos caóticos de Galaxias Chaos, a pocos kilómetros del volcán. Una característica muy particular de este edificio volcánico es la presencia de dos depresiones anidadas en la base de la ladera Noroeste, de 20 y 60 km de diámetro. La menor de ellas (Depresión A), situada a mayor altitud, ha sido interpretada por algunos autores como causada por una erupción lateral del volcán hace unos 350 Ma. Sin embargo, la de mayor diámetro y situada a menor altitud (Depresión B), no tiene un origen claro, aunque se han discutido distintas hipótesis. En cualquier caso, es especialmente en el interior de estas depresiones donde se han encontrado los rasgos geomorfológicos que podrían estar causados por actividad glacial, como posibles cordones morrénicos y depósitos de till...
Resumo:
Mineralogy and geochemistry of low-temperature hydrothermal manifestations occurring on the surface of basalts and in their cracks within a submarine volcano in the north-eastern part of the Kuril deep-sea basin have been studied. The following order of isolation of mineral phases has been found out: Fe-rich sulphides (pyrite) - Fe-rich layered silicates (hydromica of celadonite-nontronite type) - amorphous silica (opal) - Fe-oxyhydroxides (goethite) - Mn-oxyhydroxides (vernadite). Sulphide mineralization is of the phenocryst-stockwork type. Finding of pure barite fragments does not exclude presence of hydrothermal exhalations (smokers) on this volcanic structure.
Resumo:
The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.
Resumo:
The short sediment temperature probe were deployed and recovered with the LOOME observatory in 2009 and 2010, respectively. In addition to temperature, the loggers also recorded bottom water pressure at a sampling interval of 20 minutes. Even though the data obtained from the short temperature probe was strongly disturbed by leakage through a corroded connector, the data shows clearly that the probe was pulled out of the sediment on October 26, 2009, presumably by advancing mud flows.
Nematode genera abundances at the Arctic Håkon Mosby Mud Volcano (HMMV) of sediment core PS64/390-1a
Nematode genera abundances at the Arctic Håkon Mosby Mud Volcano (HMMV) of sediment core PS64/363-1b
Nematode genera abundances at the Arctic Håkon Mosby Mud Volcano (HMMV) of sediment core PS64/363-1a
Resumo:
We used a novel system of three continuous wave Doppler radars to successfully record the directivity of i) Strombolian explosions from the active lava lake of Erebus volcano, Antarctica, ii) eruptions at Stromboli volcano, Italy, and iii) a man-made explosion in a quarry. Erebus volcano contains a convecting phonolite lava lake, presumably connected to a magma chamber at depth. It is one of the few open vent volcanoes that allow a direct observation of source processes during explosions. Its lava lake is the source of frequent violent Strombolian explosions, caused by large gas bubbles bursting at the lake surface. The exact mechanism of these bubble bursts is unclear, as is the mechanism of the creation of the infrasound signal accompanying the explosions. We use the Doppler radar data to calculate the directivity of Strombolian eruptions at Erebus. This allows us to derive information about the expected type of infrasound source pattern (i.e. the role of a dipole in addition to the monopole signature) and the physical structure of the volcano. We recorded 10 large explosions simultaneously with three radars, enabling us to calculate time series of 3D directivity vectors (i.e. effectively 4D), which describe the direction of preferred expansion of the gas bubble during an explosion. Such directivity information allows a comparison to dipole infrasound radiation patterns recorded during similar explosions only a few weeks later. Video observations of explosions support our interpretation of the measurements. We conclude that at Erebus, the directivity of explosions is mainly controlled by random processes. Since the geometry of the uppermost conduit is assumed to have a large effect on the directivity of explosions, the results suggest a largely symmetrical uppermost conduit with a vertical axis of symmetry. For infrasound recordings, a significant dipole signature can be expected in addition to the predominant monopole signature.