997 resultados para CONSENSUS PREDICTION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under the project `Seasonal Prediction of the Indian Monsoon' (SPIM), the prediction of Indian summer monsoon rainfall by five atmospheric general circulation models (AGCMs) during 1985-2004 was assessed. The project was a collaborative effort of the coordinators and scientists from the different modelling groups across the country. All the runs were made at the Centre for Development of Advanced Computing (CDAC) at Bangalore on the PARAM Padma supercomputing system. Two sets of simulations were made for this purpose. In the first set, the AGCMs were forced by the observed sea surface temperature (SST) for May-September during 1985-2004. In the second set, runs were made for 1987, 1988, 1994, 1997 and 2002 forced by SST which was obtained by assuming that the April anomalies persist during May-September. The results of the first set of runs show, as expected from earlier studies, that none of the models were able to simulate the correct sign of the anomaly of the Indian summer monsoon rainfall for all the years. However, among the five models, one simulated the correct sign in the largest number of years and the second model showed maximum skill in the simulation of the extremes (i.e. droughts or excess rainfall years). The first set of runs showed some common bias which could arise either from an excessive sensitivity of the models to El Nino Southern Oscillation (ENSO) or an inability of the models to simulate the link of the Indian monsoon rainfall to Equatorial Indian Ocean Oscillation (EQUINOO), or both. Analysis of the second set of runs showed that with a weaker ENSO forcing, some models could simulate the link with EQUINOO, suggesting that the errors in the monsoon simulations with observed SST by these models could be attributed to unrealistically high sensitivity to ENSO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A state-of-the-art model of the coupled ocean-atmosphere system, the climate forecast system (CFS), from the National Centres for Environmental Prediction (NCEP), USA, has been ported onto the PARAM Padma parallel computing system at the Centre for Development of Advanced Computing (CDAC), Bangalore and retrospective predictions for the summer monsoon (June-September) season of 2009 have been generated, using five initial conditions for the atmosphere and one initial condition for the ocean for May 2009. Whereas a large deficit in the Indian summer monsoon rainfall (ISMR; June-September) was experienced over the Indian region (with the all-India rainfall deficit by 22% of the average), the ensemble average prediction was for above-average rainfall during the summer monsoon. The retrospective predictions of ISMR with CFS from NCEP for 1981-2008 have been analysed. The retrospective predictions from NCEP for the summer monsoon of 1994 and that from CDAC for 2009 have been compared with the simulations for each of the seasons with the stand-alone atmospheric component of the model, the global forecast system (GFS), and observations. It has been shown that the simulation with GFS for 2009 showed deficit rainfall as observed. The large error in the prediction for the monsoon of 2009 can be attributed to a positive Indian Ocean Dipole event seen in the prediction from July onwards, which was not present in the observations. This suggests that the error could be reduced with improvement of the ocean model over the equatorial Indian Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A performance prediction model generally applicable for volute-type centrifugal pumps has been extended to predict the dynamic characteristics of a pump during its normal starting and stopping periods. Experiments have been conducted on a volute pump with different valve openings to study the dynamic behaviour of the pump during normal start-up and stopping, when a small length of discharge pipeline is connected to the discharge flange of the pump. Such experiments have also been conducted when the test pump was part of a hydraulic system, an experimental rig, where it is pumping against three similar pumps, known as supply pumps, connected in series, with the supply pumps kept idle or running. Instantaneous rotational speed, flowrate, and delivery and suction pressures of the pump were recorded and it was observed in all the tested cases that the change of pump behaviour during the transient period was quasi-steady, which validates the quasi-steady approach presented in this paper. The nature of variation of parameters during the transients has been discussed. The model-predicted dynamic head-capacity curves agree well with the experimental data for almost all the tested cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EEG time series has been subjected to various formalisms of analysis to extract meaningful information regarding the underlying neural events. In this paper the linear prediction (LP) method has been used for analysis and presentation of spectral array data for the better visualisation of background EEG activity. It has also been used for signal generation, efficient data storage and transmission of EEG. The LP method is compared with the standard Fourier method of compressed spectral array (CSA) of the multichannel EEG data. The autocorrelation autoregressive (AR) technique is used for obtaining the LP coefficients with a model order of 15. While the Fourier method reduces the data only by half, the LP method just requires the storage of signal variance and LP coefficients. The signal generated using white Gaussian noise as the input to the LP filter has a high correlation coefficient of 0.97 with that of original signal, thus making LP as a useful tool for storage and transmission of EEG. The biological significance of Fourier method and the LP method in respect to the microstructure of neuronal events in the generation of EEG is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we develop a Linear Programming (LP) based decentralized algorithm for a group of multiple autonomous agents to achieve positional consensus. Each agent is capable of exchanging information about its position and orientation with other agents within their sensing region. The method is computationally feasible and easy to implement. Analytical results are presented. The effectiveness of the approach is illustrated with simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of long-range prediction of rainfall pattern for devising and planning agricultural strategies cannot be overemphasized. However, the prediction of rainfall pattern remains a difficult problem and the desired level of accuracy has not been reached. The conventional methods for prediction of rainfall use either dynamical or statistical modelling. In this article we report the results of a new modelling technique using artificial neural networks. Artificial neural networks are especially useful where the dynamical processes and their interrelations for a given phenomenon are not known with sufficient accuracy. Since conventional neural networks were found to be unsuitable for simulating and predicting rainfall patterns, a generalized structure of a neural network was then explored and found to provide consistent prediction (hindcast) of all-India annual mean rainfall with good accuracy. Performance and consistency of this network are evaluated and compared with those of other (conventional) neural networks. It is shown that the generalized network can make consistently good prediction of annual mean rainfall. Immediate application and potential of such a prediction system are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic vibration in the Carbon Nanotubes (CNTs) gives rise to non-local interactions. In this paper, an expression for the non-local scaling parameter is derived as a function of the geometric and electronic properties of the rolled graphene sheet in single-walled CNTs. A self-consistent method is developed for the linearization of the problem of ultrasonic wave propagation in CNTs. We show that (i) the general three-dimensional elastic problem leads to a single non-local scaling parameter (e(0)), (ii) e(0) is almost constant irrespective of chirality of CNT in the case of longitudinal wave propagation, (iii) e(0) is a linear function of diameter of CNT for the case of torsional mode of wave propagation, (iv) e(0) in the case of coupled longitudinal-torsional modes of wave propagation, is a function which exponentially converges to that of axial mode at large diameters and to torsional mode at smaller diameters. These results are valid in the long-wavelength limit. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular understanding of disease processes can be accelerated if all interactions between the host and pathogen are known. The unavailability of experimental methods for large-scale detection of interactions across host and pathogen organisms hinders this process. Here we apply a simple method to predict protein-protein interactions across a host and pathogen organisms. We use homology detection approaches against the protein-protein interaction databases. DIP and iPfam in order to predict interacting proteins in a host-pathogen pair. In the present work, we first applied this approach to the test cases involving the pairs phage T4 - Escherichia coli and phage lambda - E. coli and show that previously known interactions could be recognized using our approach. We further apply this approach to predict interactions between human and three pathogens E. coli, Salmonella enterica typhimurium and Yersinia pestis. We identified several novel interactions involving proteins of host or pathogen that could be thought of as highly relevant to the disease process. Serendipitously, many interactions involve hypothetical proteins of yet unknown function. Hypothetical proteins are predicted from computational analysis of genome sequences with no laboratory analysis on their functions yet available. The predicted interactions involving such proteins could provide hints to their functions. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phenomenological model has been developed for predicting separation factors obtained in concentrating protein solutions using batch-foam columns. The model considers the adsorption of surface active proteins onto the air-water interface of bubbles, and drainage of liquid from the foam, which are the two predominant processes responsible for separation in foam columns. The model has been verified with data collected on casein and bovine serum albumin (BSA) solutions, for which adsorption isotherms are available in the literature. It has been found that an increase in liquid pool height above the gas distributor and the time allowed for drainage result in a better separation. Further, taller foam columns yield poorer separation at constant time of drainage. The model successfully predicts the observed results. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well-known that the senses (or the handedness) of the helical assemblies formed from compressed monolayers and bilayers of chiral amphiphiles are highly specific about the chirality of the monomers concerned. We present here a molecular approach that can successfully predict the senses of such helical morphologies. The present approach is based on a reduced tractable description in terms of an effective pair potential (EPP) which depends on the distance of separation and the relative orientations of the two amphiphiles. This approach explicitly considers the pairwise intermolecular interactions between the groups attached to the chiral centers of the two neighboring amphiphiles. It is found that for a pair of the same kind of enantiomers the minimum energy configuration favors a twist angle between molecules and that this twist from neighbor to neighbor gives rise to the helicity of the aggregate. From the known twist angles at the minimum energy configuration the successive arrangement of an array of molecules can be predicted. Therefore, the sense of the helicity can be predicted from the molecular interactions. The predicted senses of the helical structures are in complete agreement with all known experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments were conducted on the oxygen transfer coefficient, k(L)a(20), through surface aeration in geometrically similar square tanks, with a rotor of diameter D fitted with six flat blades. An optimal geometric similarity of various linear dimensions, which produced maximum k(L)a(20) for any rotational speed of rotor N by an earlier study, was maintained. A simulation equation uniquely correlating k = k(L)a(20)(nu/g(2))(1/3) (nu and g are kinematic viscosity of water and gravitational constant, respectively), and a parameter governing the theoretical power per unit volume, X = (ND2)-D-3/(g(4/3)nu(1/3)), is developed. Such a simulation equation can be used to predict maximum k for any N in any size of such geometrically similar square tanks. An example illustrating the application of results is presented. Also, it has been established that neither the Reynolds criterion nor the Froude criterion is singularly valid to simulate either k or K = k(L)a(20)/N, simultaneously in all the sizes of tanks, even through they are geometrically similar. Occurrence of "scale effects" due to the Reynolds and the Froude laws of similitude on both k and K are also evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic characteristic of a chaotic system is its sensitivity to the infinitesimal changes in its initial conditions. A limit to predictability in chaotic system arises mainly due to this sensitivity and also due to the ineffectiveness of the model to reveal the underlying dynamics of the system. In the present study, an attempt is made to quantify these uncertainties involved and thereby improve the predictability by adopting a multivariate nonlinear ensemble prediction. Daily rainfall data of Malaprabha basin, India for the period 1955-2000 is used for the study. It is found to exhibit a low dimensional chaotic nature with the dimension varying from 5 to 7. A multivariate phase space is generated, considering a climate data set of 16 variables. The chaotic nature of each of these variables is confirmed using false nearest neighbor method. The redundancy, if any, of this atmospheric data set is further removed by employing principal component analysis (PCA) method and thereby reducing it to eight principal components (PCs). This multivariate series (rainfall along with eight PCs) is found to exhibit a low dimensional chaotic nature with dimension 10. Nonlinear prediction employing local approximation method is done using univariate series (rainfall alone) and multivariate series for different combinations of embedding dimensions and delay times. The uncertainty in initial conditions is thus addressed by reconstructing the phase space using different combinations of parameters. The ensembles generated from multivariate predictions are found to be better than those from univariate predictions. The uncertainty in predictions is decreased or in other words predictability is increased by adopting multivariate nonlinear ensemble prediction. The restriction on predictability of a chaotic series can thus be altered by quantifying the uncertainty in the initial conditions and also by including other possible variables, which may influence the system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cis-regulatory regions on DNA serve as binding sites for proteins such as transcription factors and RNA polymerase. The combinatorial interaction of these proteins plays a crucial role in transcription initiation, which is an important point of control in the regulation of gene expression. We present here an analysis of the performance of an in silico method for predicting cis-regulatory regions in the plant genomes of Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) on the basis of free energy of DNA melting. For protein-coding genes, we achieve recall and precision of 96% and 42% for Arabidopsis and 97% and 31% for rice, respectively. For noncoding RNA genes, the program gives recall and precision of 94% and 75% for Arabidopsis and 95% and 90% for rice, respectively. Moreover, 96% of the false-positive predictions were located in noncoding regions of primary transcripts, out of which 20% were found in the first intron alone, indicating possible regulatory roles. The predictions for orthologous genes from the two genomes showed a good correlation with respect to prediction scores and promoter organization. Comparison of our results with an existing program for promoter prediction in plant genomes indicates that our method shows improved prediction capability.