944 resultados para CONCENTRATED COLLOIDAL DISPERSIONS
Resumo:
Blends of polyaniline (PAni) and poly(methyl methacrylate) (PMMA) have been produced using core-shell particle synthesis, which is advantageous because it allows changing surface-related properties of PMMA with relatively small amounts of PAW and without the use of organic solvents. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements indicated that the deposition of pollyaniline seems to alter the regular shape of the primary acrylic latex particles. The coverage of PMMA particles by PAW was confirmed by FTIR measurements, where distinct data were obtained from the transmission and diffuse reflectance modes, since the latter is surface sensitive. The zeta potential, which is also a surface-related property, increased with the contents of PAW, as the shells probably became protonated with PAW in the emeraldine salt form. Coverage with PAW did not affect the thermal bulk properties of the PMMA shells.
Resumo:
Dynamic light scattering has been used to investigate sonicated aqueous dispersions of dioctadecyldimethylammonium bromide (DODAB). The hydrodynamic radius (R-H) of the scattering particles and the mean scattering intensity (I) have been monitored as functions of the DODAB concentration and temperature (T). In the dilute regime, the relaxation time distribution of the sonicated dispersion of DODAB is bimodal with the slow mode dominating the distribution. The slow and fast modes are respectively characteristic of vesicles and bilayer fragments with R-H values of 22 and 8.5 nm (25 degrees C) and 20 and 6 nm (50 degrees C), respectively. The total scattered intensity initially decreased with temperature up to 45 degrees C (T-c), above which it was constant; identical behavior was observed for the slow mode intensity, but the fast mode intensity was constant with temperature change, showing that T-c is a property of the vesicles and not of the bilayer fragments. At T-c the slow vesicle mode becomes narrower whereas the fast fragment mode shows no change. on aging, the dispersion showed a slow transition from bimodal to a rather broad single-modal relaxation time distribution. The corresponding R-H was 33.8 nm when measured 10 months after preparation. These results suggest that aqueous sonicated dispersions of DODAB are metastable.
Resumo:
This paper describes particle aggregation process during gelation of SnO2 hydrosols. The effect of the concentration of SnO2 colloidal particles on the kinetics of gelation of hydrosols containing PVA (poly(vinyl alcohol)) was analysed by dynamic rheological measurements. The complex viscosity and the storage and loss moduli have been measured during the sol-gel transition and the results correlated to mass fractal growth, nearly linear growth models, and scalar percolation theory. The analysis of the experimental results shows that a linear aggregation occurs in the initial step of the gelation followed by a fractal growth to form a three-dimensional network. Near the gel point this physical gel exhibits the typical scaling expected from an electrical percolation analogy. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Polyaniline (PAni) has been classified as an intractable polymer, particularly in its conducting form, the emeraldine salt (ES). Therefore one can consider the mixture of water and PAni as a suspension. The conducting form of PAni can be obtained by a doping process known as acid doping, in which a strong acid turns PAni from its insulating form, the emeraldine base (EB), into the conducting form, the emeraldine salt. With the objective of establishing a correlation between the doping level and the zeta potential of polyaniline dispersions, polyaniline + HCl aqueous suspensions were prepared. Positive zeta potential values for the various suspensions of PAni showed that it acquired positive charges after the doping process. It was also observed an increase in zeta potential values as HCl concentration increased, which could be correlated to UV-visible spectra of PAni suspensions.
Resumo:
Various properties of particles can be altered by coating them with a layer of different chemical composition. Yttrium iron garnet (YIG) particles has been coated with silica for control of their sintering, corrosion resistance, and stabilization of magnetic properties. This silica cover was obtained by hydrolysis of tetraethylorthosilicate (TEOS) in 2-propanol. This material was characterized by transmission (TEM) electron microscopy, (XEDS) X-ray energy-dispersive spectrometry, (XPS) X-ray photoemission spectroscopy and (VSM) vibrating sample magnetometry. YIG was heterocoagulated by silica as indicated by TEM micrographies. XPS measurements indicated that only binding energy for silicon and oxygen was found on the silica shell, which confirms that the YIG was covered. The values of the saturation magnetization differ from the heterocoagulated system to well-crystallized YIG.
Resumo:
Luminescent Eu3+-containing polyphosphate tungstate aqueous colloidal systems were prgared and studied as a function of the relative polyphosphate tungstate content. In polyphosphate-rich solutions, Eu-H- ions occupy cagelike sites composed of phosphate groups from the metaphosphate chains. In these sites, an average number of 0.5 water molecule coordinates to an Eu3+ ion and the 500 emission quantum efficiency is 0.22. Tungstatc addition leads to important modifications in neighboring Eu3+ leading to coordination sites in the aqueous medium where metal ions are completely hidden from interactions with solvent molecules. Transmission electron microscopy results clearly show \V-rich nanoparticles with sizes between 5 and 10 nm for all tungstate relative concentrations. For high tungstatc relative contents (above 30 mol %), spectroscopic results suggest the presence of Eu34- in polyoxometalate (P0M)-like sites by comparison with the well-known decatungstoeuropate [EuW10O36](9-) structure. These new aqueous colloids display surprisingly high 5llo emission quantum efficiencies of ca 80% because of the strong ligand field provided by tungstate POM ligands and the complete absence of water molecules from the Eu3+ first coordination shell.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two concentrated solutions of NiBr2 have been examined by x-ray diffraction. The Fourier transformed scattering data indicate inner complex formation between Ni2 + and Br- ions. Average numbers of bonded bromide ions per nickel atom have been determined for each solution and the reliability of the complexation numbers as well as of the other structural parameters has been critically examined. © 1985 American Institute of Physics.
Resumo:
Pentacarbonyliron was oxidized with H2O2, in organic solvents, to give colloidal sols. The aqueous-ethanolic sol is highly stable and undergoes thermally-reversible coagulation. Its solid phase was found to be a non-crystalline Fe (III) hydroxoacetate which is transformed to α-Fe2O3 when heated to 300°C. Iron-bound acetate groups are assumed to have a major role in the sol stability, by preserving the amorphous solid phase. Dry hydroxoacetate particles were heated under vacuum; scanning electron microscopy revealed that these particles coalesce and grow, as in a sintering process but at low temperatures (100-250°). © 1987.
Resumo:
Transparent SnO2 gels were obtained from SnCl4 aqueous solution. The sol formation from tin oxihydroxy peptization in different concentrations and by electrolyte addition in solution was measured. It was verified that the residual presence of chloride ions compromises the colloidal system stability. The sol-gel transition was investigated as a function of the quantity of solid particles in the aqueous environment and of aging time at 60°C by infrared spectroscopy and rheological measurements. The transition from plastic to pseudoplastic flow observed with the increase in loading suggests that a continuous and three-dimensional network formation is closely related to hydrogen bridges and/or hydrogen clusters, culminating in the gel formation. © 1990.
Resumo:
Electrolytes may modify the physical-chemical characteristics of colloidal particle interfaces in suspension, which can favour gel or aggregate formation. The influence of NH4Cl loading on the aggregation and gelation of SnO2 colloidal suspensions was investigated using measurements of rheology, turbidity and infrared spectra. A rapid aggregate growth for samples with Cl- > 20 mM was observed. With increasing age, gelation was observed due to formation of interaggregate bonds. For concentration of Cl- between 20 and 9 mM, the aggregation process was slower allowing the formation of gel with a network which was not destroyed as the gel was submitted to a small rate of shear. As aging continues, the condensation reaction between OH groups gave rise to the formation of Sn-O bonds, irrespective of the electrolyte loading. © 1992 Elsevier Science Publishers B.V. All rights reserved.