967 resultados para CMBR detectors
Resumo:
El treball presentat ve motivat per la necessitat d’instal•lació d’un pàrquing públic i privat de nova construcció a nivell d’il•luminació i ventilació. Per poder satisfer les necessitats del nostre client d’estalvi energètic i confort en l’edifici es decideix d’implementar una instal•lació immòtica que és l’aplicació de tècniques de gestió i control automatitzat a un edifici terciari amb bus de comunicació KNX/EIB. Per a la il•luminació s’han utilitzat fluorescents amb balasts DALI, que permeten la seva regulació i control, per així poder adequar en tot moment l’encesa i intensitat de llum d’aquests. En quant a la ventilació s’han utilitzat variadors de freqüència per també poder optimitzar el funcionament dels ventiladors podent posar-los en marxa quan realment sigui necessari i a la potència que calgui. Per enllaçar tots els elements de la instal•lació, detectors i actuadors, sorgeig la necessitat d’implementar xarxes de comunicació com el KNX/EIB, DALI, Modbus i Ethernet. Per gestionar variables, comunicacions i controlar elements, s´hi han implementen dos autòmats programables a més d’un PC integrat per la visualització i el control del pàrquing. S’ha aconseguit de realitzar un pàrquing totalment automàtic on no és necessaria l’actuació dels operaris i amb les principals càrregues elèctriques totalment regulables en potència. S’ha comprovat que la instal•lació funciona per sota de la potència nominal de les càrregues amb l’estalvi energètic que això suposa.
Resumo:
The RPC Detector Control System (RCS) is the main subject of this PhD work. The project, involving the Lappeenranta University of Technology, the Warsaw University and INFN of Naples, is aimed to integrate the different subsystems for the RPC detector and its trigger chain in order to develop a common framework to control and monitoring the different parts. In this project, I have been strongly involved during the last three years on the hardware and software development, construction and commissioning as main responsible and coordinator. The CMS Resistive Plate Chambers (RPC) system consists of 912 double-gap chambers at its start-up in middle of 2008. A continuous control and monitoring of the detector, the trigger and all the ancillary sub-systems (high voltages, low voltages, environmental, gas, and cooling), is required to achieve the operational stability and reliability of a so large and complex detector and trigger system. Role of the RPC Detector Control System is to monitor the detector conditions and performance, control and monitor all subsystems related to RPC and their electronics and store all the information in a dedicated database, called Condition DB. Therefore the RPC DCS system has to assure the safe and correct operation of the sub-detectors during all CMS life time (more than 10 year), detect abnormal and harmful situations and take protective and automatic actions to minimize consequential damages. The analysis of the requirements and project challenges, the architecture design and its development as well as the calibration and commissioning phases represent themain tasks of the work developed for this PhD thesis. Different technologies, middleware and solutions has been studied and adopted in the design and development of the different components and a big challenging consisted in the integration of these different parts each other and in the general CMS control system and data acquisition framework. Therefore, the RCS installation and commissioning phase as well as its performance and the first results, obtained during the last three years CMS cosmic runs, will be
Resumo:
Avalanche photodiodes operated in the Geiger mode present very high intrinsic gain and fast time response, which make the sensor an ideal option for those applications in which detectors with high sensitivity and velocity are required. Moreover, they are compatible with conventional CMOS technologies, allowing sensor and front-end electronics integration within the pixel cell. Despite these excellent qualities, the photodiode suffers from high intrinsic noise, which degrades the performance of the detector and increases the memory area to store the total amount of information generated. In this work, a new front-end circuit that allows low reverse bias overvoltage sensor operation to reduce the noise in Geiger mode avalanche photodiode pixel detectors is presented. The proposed front-end circuit also enables to operate the sensor in the gated acquisition mode to further reduce the noise. Experimental characterization of the fabricated pixel with the conventional HV-AMS 0.35µm technology is also presented in this article.
Resumo:
In the present work, a method was developed and validated for the quantification of benzyl isothiocyanate (BITC) in the fruits of Carica papaya. The quantification of this compound was carried out by gas chromatography (GC) with selective detectors - nitrogen phosphorus detector (NPD) and flame photometric detector (FPD). The performance of these detectors showed a higher sensitivity of the NPD with a broader linear range of detection. The LOD/LOQ were 0.038/0.100 µg/mL for NPD and 5.78/19.29 µg/mL for FPD. The recovery of the method for BITC was 90,64%. An average value of BITC concentration in all the analyzed samples was 16,23 µg BITC/g.
Resumo:
La societat actual es caracteritza pel seu ús intensiu i extensiu de les telecomunicacions, que ha esdevingut possible gràcies a la microelectrònica i altres tecnologies. Abans, la microelectrònica ja havia deixat la seva empremta en l’automatització i la computació, on la reducció de costos que hi aportava havia anat fent viables cada vegada més aplicacions. Aquest fet ha esdevingut particularment clar en l’automoció on fa relativament pocs anys els elements electrònics tenien un rol marginal i ara constitueixen una part important de tota mena de vehicles. Però mentre aquestes aplicacions afectaven principalment les màquines, les telecomunicacions involucren majoritàriament les persones i això ha implicat un esforç tecnològic addicional per aconseguir que els nous dispositius fossin assequibles per a molt usuaris.Aquest cicle “nova tecnologia que permet noves aplicacions que redueixen el cost de la tecnologia i això fa viables noves aplicacions”, no queda tancat dins cap àmbit d’aplicació sinó que té una dimensió totalment transversal. Els sensors, molts d’ells basats en tecnologies microelectròniques, són un paradigma del caràcter transversal de la tecnologia fins el punt que han esdevingut omnipresents, també en aplicacions alimentàries, tot i que encara hi hagi molts reptes per afrontar.En aquesta ponència s’exposaran en primer lloc els fonaments dels sensors i alguns dels avenços tecnològics que han marcat la seva evolució en els darrers anys. Després es revisaran algunes de les aplicacions actuals dels sensors en la indústria alimentària i els factors singulars que per una banda requereixen la incorporació de nous sensors i que per altra impedeixen que aquesta incorporació es pugui fer mitjançant la simple adaptació de solucions aplicades en altres indústries. Finalment, s’exposaran algunes tendències que es preveu que poden influir notablement en una major implantació dels sensors actuals i en el desenvolupament de nous sensors.
Resumo:
Since the introduction of GC there has been an ongoing interest in reducing time of analysis resulting in new terms and definitions such as ultra fast gas chromatography (UF-GC). One of the most used definitions describes UF-GC as a technique that combines the employment of short narrow bore column with very fast temperature programming rates producing chromatographic peaks in the range of 50 ms and allowing separations times in 1-2 min or less. This paper summarizes the analytical approaches, the main parameters involved and the instrumentation towards UF-GC.
Resumo:
Raman imaging spectroscopy is a highly useful analytical tool that provides spatial and spectral information on a sample. However, CCD detectors used in dispersive instruments present the drawback of being sensitive to cosmic rays, giving rise to spikes in Raman spectra. Spikes influence variance structures and must be removed prior to the use of multivariate techniques. A new algorithm for correction of spikes in Raman imaging was developed using an approach based on comparison of nearest neighbor pixels. The algorithm showed characteristics including simplicity, rapidity, selectivity and high quality in spike removal from hyperspectral images.
Resumo:
The interest in the use of evaporative light scattering detector (ELSD) for the analysis of different classes of natural products has grown over the years. This is because this detector has become an excellent alternative compared to other types of detectors, such as the refractive index detector and the ultraviolet (UV) detector. This review describes the basic principles of ELSD functioning and discusses the advantages and disadvantages in using an ELSD for the analysis of organic compounds. Additionaly, an overview, covering the last 23 years, of ELSD applications in natural products analysis (saponins, terpenes, carbohydrates, glycosides, alkaloids, steroids, flavonoids, peptides, polyketides, coumarins and iridoids) is presented and discussed.
Resumo:
The volatile oils of Dalbergia frutescens were obtained by hydrodistillation on a Clevenger-modified apparatus for every month of one year and assessed on GC/MS and GC/FID detectors for qualitative and quantitative analyses. The influence on content of volatile oils was directly proportional to the environmental variables, temperature and cloudiness, and inversely proportional to precipitation. Among the volatile compounds detected, linalool, β-damascenone, α-ionone, geranyl acetone and β-ionone were the main components, of which β-damascenone and β-ionone were found at the highest concentrations.
Resumo:
Persistent luminescence materials can store energy from solar radiation or artificial lighting and release it over a period of several hours without a continuous excitation source. These materials are widely used to improve human safety in emergency and traffic signalization. They can also be utilized in novel applications including solar cells, medical diagnostics, radiation detectors and structural damage sensors. The development of these materials is currently based on methods based on trial and error. The tailoring of new materials is also hindered by the lack of knowledge on the role of their intrinsic and extrinsic lattice defects in the appropriate mechanisms. The goal of this work was to clarify the persistent luminescence mechanisms by combining ab initio density functional theory (DFT) calculations with selected experimental methods. The DFT approach enables a full control of both the nature of the defects and their locations in the host lattice. The materials studied in the present work, the distrontium magnesium disilicate (Sr2MgSi2O7) and strontium aluminate (SrAl2O4) are among the most efficient persistent luminescence hosts when doped with divalent europium Eu2+ and co-doped with trivalent rare earth ions R3+ (R: Y, La-Nd, Sm, Gd-Lu). The polycrystalline materials were prepared with the solid state method and their structural and phase purity was confirmed by X-ray powder diffraction. Their local crystal structure was studied by high-resolution transmission electron microscopy. The crystal and electronic structure of the nondoped as well as Eu2+, R2+/3+ and other defect containing materials were studied using DFT calculations. The experimental trap depths were obtained using thermoluminescence (TL) spectroscopy. The emission and excitation of Sr2MgSi2O7:Eu2+,Dy3+ were also studied. Significant modifications in the local crystal structure due to the Eu2+ ion and lattice defects were found by the experimental and DFT methods. The charge compensation effects induced by the R3+ co-doping further increased the number of defects and distortions in the host lattice. As for the electronic structure of Sr2MgSi2O7 and SrAl2O4, the experimental band gap energy of the host materials was well reproduced by the calculations. The DFT calculated Eu2+ and R2+/3+ 4fn as well as 4fn-15d1 ground states in the Sr2MgSi2O7 band structure provide an independent verification for an empirical model which is constructed using rather sparse experimental data for the R3+ and especially the R2+ ions. The intrinsic and defect induced electron traps were found to act together as energy storage sites contributing to the materials’ efficient persistent luminescence. The calculated trap energy range agreed with the trap structure of Sr2MgSi2O7 obtained using TL measurements. More experimental studies should be carried out for SrAl2O4 to compare with the DFT calculations. The calculated and experimental results show that the electron traps created by both the rare earth ions and vacancies are modified due to the defect aggregation and charge compensation effects. The relationships between this modification and the energy storage properties of the solid state materials are discussed.
Resumo:
Reaktorisydämen valvonnalla varmistetaan, että polttoaineelta vaaditut termiset marginaalit toteutuvat ja polttoaineen suojakuori säilyy ehjänä. Olkiluodon kiehutusvesilaitoksen nykyinen sydämen valvontajärjestelmä koostuu SIMULATE-3-sydänsimulaattoriohjelmasta, reaktorisydämen instrumentoinnista, termisen tehon laskentaohjelmasta, tiedonkeruuohjelmista ja käynnistysautomatiikasta. Uusi järjestelmä koostuu näiden lisäksi GARDEL-ohjelmasta, joka on kehitetty kevytvesireaktoreiden sydämen käytön suunnitteluun ja valvontaan. GARDEL käyttää laskentaan samoja ohjelmia, jotka ovat jo Olkiluodon kiehutusvesilaitoksella käytössä. Tämän työn tarkoituksena oli verrata nykyistä ja uutta sydämen valvontajärjestelmää Olkiluodon kiehutusvesilaitoksella. Työssä tutkittiin LPRM-detektorien kalibroinnin jälkeisen datan käsittelyä, palamapäivitystä, stabiilisuuslaskentaa ja adaptiivisia menetelmiä. Järjestelmien vertailuun käytettiin Olkiluoto 2 -laitosyksiköltä käyttöjaksolta 31 (2011–2012) saatuja laskentuloksia. Tulosten perusteella havaittiin uuden järjestelmän laskennassa yksittäisiä virheitä, jotka tulee korjata. Lisäksi uuden järjestelmän toiminnasta tarvitaan lisäselvitystä.
Resumo:
The interferometer for low resolution portable Fourier Transform middle infrared spectrometer was developed and studied experimentally. The final aim was a concept for a commercial prototype. Because of the portability, the interferometer should be compact sized and insensitive to the external temperature variations and mechanical vibrations. To minimise the size and manufacturing costs, Michelson interferometer based on plane mirrors and porch swing bearing was selected and no dynamic alignment system was applied. The driving motor was a linear voice coil actuator to avoid mechanical contact of the moving parts. The driving capability for low mirror driving velocities required by the photoacoustic detectors was studied. In total, four versions of such an interferometer were built and experimentally studied. The thermal stability during the external temperature variations and the alignment stability over the mirror travel were measured using the modulation depth of the wide diameter laser beam. Method for estimating the mirror tilt angle from the modulation depth was developed to take account the effect from the non-uniform intensity distribution of the laser beam. The spectrometer stability was finally studied also using the infrared radiation. The latest interferometer was assembled for the middle infrared spectrometer with spectral range from 750 cm−1 to 4500 cm−1. The interferometer size was (197 × 95 × 79) mm3 with the beam diameter of 25 mm. The alignment stability as the change of the tilt angle over the mirror travel of 3 mm was 5 μrad, which decreases the modulation depth only about 0.7 percent in infrared at 3000 cm−1. During the temperature raise, the modulation depth at 3000 cm−1 changed about 1 . . . 2 percentage units per Celsius over short term and even less than 0.2 percentage units per Celsius over the total temperature raise of 30 °C. The unapodised spectral resolution was 4 cm−1 limited by the aperture size. The best achieved signal to noise ratio was about 38 000:1 with commercially available DLaTGS detector. Although the vibration sensitivity requires still improving, the interferometer performed, as a whole, very well and could be further developed to conform all the requirements of the portable and stable spectrometer.
Resumo:
This Master’s Thesis is dedicated to the simulation of new p-type pixel strip detector with enhanced multiplication effect. It is done for high-energy physics experiments upgrade such as Super Large Hadron Collider especially for Compact Muon Solenoid particle track silicon detectors. These detectors are used in very harsh radiation environment and should have good radiation hardness. The device engineering technology for developing more radiation hard particle detectors is used for minimizing the radiation degradation. New detector structure with enhanced multiplication effect is proposed in this work. There are studies of electric field and electric charge distribution of conventional and new p-type detector under reverse voltage bias and irradiation. Finally, the dependence of the anode current from the applied cathode reverse voltage bias under irradiation is obtained in this Thesis. For simulation Silvaco Technology Computer Aided Design software was used. Athena was used for creation of doping profiles and device structures and Atlas was used for getting electrical characteristics of the studied devices. The program codes for this software are represented in Appendixes.
Resumo:
The Large Hadron Collider (LHC) in The European Organization for Nuclear Research (CERN) will have a Long Shutdown sometime during 2017 or 2018. During this time there will be maintenance and a possibility to install new detectors. After the shutdown the LHC will have a higher luminosity. A promising new type of detector for this high luminosity phase is a Triple-GEM detector. During the shutdown these detectors will be installed at the Compact Muon Solenoid (CMS) experiment. The Triple-GEM detectors are now being developed at CERN and alongside also a readout ASIC chip for the detector. In this thesis a simulation model was developed for the ASICs analog front end. The model will help to carry out more extensive simulations and also simulate the whole chip before the whole design is finished. The proper functioning of the model was tested with simulations, which are also presented in the thesis.
Resumo:
The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.