971 resultados para CLICS procedures
Resumo:
In order to inactivate enzymatic deterioration, whole rice bran samples were subjected to two stabilization methods. Changes in nutritional value in terms of, concerning chemical composition, minerals and fatty acid content, were evaluated to supplement existing data and promote the utilization of rice bran in the human diet. The following homemade heat treatments were applied: roasting on a conventional stove or heating in a microwave oven. Based on the results, the different heating methods affected sample composition, since the levels of some nutrients of treated samples showed significant changes (p<0.05) compared to corresponding raw samples. The rice bran treated on a conventional stove produced products with lower moisture (5.14±0.10 g/100 g) and nutrients such as sodium 11.8%; palmitic acid 9.9% and stearic acid 8.1%. The microwave oven procedure resulted in better nutrient preservation, with slightly higher moisture content (6.28±0.10 g/100 g), and appears to be a practical and rapid tool for home heat stabilization of rice bran.
Resumo:
The presence of heparin and a mixture of penicillamine, hypotaurine, and epinephrine (PHE) solution in the in vitro fertilization (IVF) media seem to be a prerequisite when bovine spermatozoa are capacitated in vitro, in order to stimulate sperm motility and acrosome reaction. The present study was designed to determine the effect of the addition of heparin and PHE during IVF on the quality and penetrability of spermatozoa into bovine oocytes and on subsequent embryo development. Sperm quality, evaluated by the integrity of plasma and acrosomal membranes and mitochondrial function, was diminished (P<0.05) in the presence of heparin and PHE. Oocyte penetration and normal pronuclear formation rates, as well as the percentage of zygotes presenting more than two pronuclei, was higher (P<0.05) in the presence of heparin and PHE. No differences were observed in cleavage rates between treatment and control (P>0.05). However, the developmental rate to the blastocyst stage was increased in the presence of heparin and PHE (P>0.05). The quality of embryos that reached the blastocyst stage was evaluated by counting the inner cell mass (ICM) and trophectoderm (TE) cell numbers and total number of cells; the percentage of ICM and TE cells was unaffected (P>0.05) in the presence of heparin and PHE (P<0.05). In conclusion, this study demonstrated that while the supplementation of IVF media with heparin and PHE solution impairs spermatozoa quality, it plays an important role in sperm capacitation, improving pronuclear formation, and early embryonic development
Resumo:
This thesis covers sampling and analytical procedures for isocyanates (R-NCO) and amines (R-NH2), two kinds of chemicals frequently used in association with the polymeric material polyurethane (PUR). Exposure to isocyanates may result in respiratory disorders and dermal sensitisation, and they are one of the main causes of occupational asthma. Several of the aromatic diamines associated with PUR production are classified as suspected carcinogens. Hence, the presence of these chemicals in different exposure situations must be monitored. In the context of determining isocyanates in air, the methodologies included derivatisation with the reagent di-n-butylamine (DBA) upon collection and subsequent determination using liquid chromatography (LC) and mass spectrometric detection (MS). A user-friendly solvent-free sampler for collection of airborne isocyanates was developed as an alternative to a more cumbersome impinger-filter sampling technique. The combination of the DBA reagent together with MS detection techniques revealed several new exposure situations for isocyanates, such as isocyanic acid during thermal degradation of PUR and urea-based resins. Further, a method for characterising isocyanates in technical products used in the production of PUR was developed. This enabled determination of isocyanates in air for which pure analytical standards are missing. Tandem MS (MS/MS) determination of isocyanates in air below 10-6 of the threshold limit values was achieved. As for the determination of amines, the analytical methods included derivatisation into pentafluoropropionic amide or ethyl carbamate ester derivatives and subsequent MS analysis. Several amines in biological fluids, as markers of exposure for either the amines themselves or the corresponding isocyanates, were determined by LC-MS/MS at amol level. In aqueous extraction solutions of flexible PUR foam products, toluene diamine and related compounds were found. In conclusion, this thesis demonstrates the usefulness of well characterised analytical procedures and techniques for determination of hazardous compounds. Without reliable and robust methodologies there is a risk that exposure levels will be underestimated or, even worse, that relevant compounds will be completely missed.
Resumo:
Since the birth of the European Union on 1957, the development of a single market through the integration of national freight transport networks has been one of the most important points in the European Union agenda. Increasingly congested motorways, rising oil prices and concerns about environment and climate change require the optimization of transport systems and transport processes. The best solution should be the intermodal transport, in which the most efficient transport options are used for the different legs of transport. This thesis examines the problem of defining innovative strategies and procedures for the sustainable development of intermodal freight transport in Europe. In particular, the role of maritime transport and railway transport in the intermodal chain are examined in depth, as these modes are recognized to be environmentally friendly and energy efficient. Maritime transport is the only mode that has kept pace with the fast growth in road transport, but it is necessary to promote the full exploitation of it by involving short sea shipping as an integrated service in the intermodal door-to-door supply chain and by improving port accessibility. The role of Motorways of the Sea services as part of the Trans-European Transport Network is is taken into account: a picture of the European policy and a state of the art of the Italian Motorways of the Sea system are reported. Afterwards, the focus shifts from line to node problems: the role of intermodal railway terminals in the transport chain is discussed. In particular, the last mile process is taken into account, as it is crucial in order to exploit the full capacity of an intermodal terminal. The difference between the present last mile planning models of Bologna Interporto and Verona Quadrante Europa is described and discussed. Finally, a new approach to railway intermodal terminal planning and management is introduced, by describing the case of "Terminal Gate" at Verona Quadrante Europa. Some proposals to favour the integrate management of "Terminal Gate" and the allocation of its capacity are drawn up.
Resumo:
The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.
Resumo:
Outdoor bronzes exposed to the environment form naturally a layer called patina, which may be able to protect the metallic substrate. However, since the last century, with the appearance of acid rains, a strong change in the nature and properties of the copper based patinas occurred [1]. Studies and general observations have established that bronze corrosion patinas created by acid rain are not only disfiguring in terms of loss of detail and homogeneity, but are also unstable [2]. The unstable patina is partially leached away by rainwater. This leaching is represented by green streaking on bronze monuments [3]. Because of the instability of the patina, conservation techniques are usually required. On a bronze object exposed to the outdoor environment, there are different actions of the rainfall and other atmospheric agents as a function of the monument shape. In fact, we recognize sheltered and unsheltered areas as regards exposure to rainwater [4]. As a consequence of these different actions, two main patina types are formed on monuments exposed to the outdoor environment. These patinas have different electrochemical, morphological and compositional characteristics [1]. In the case of sheltered areas, the patina contains mainly copper products, stratified above a layer strongly enriched in insoluble Sn oxides, located at the interface with the uncorroded metal. Moreover, different colors of the patina result from the exposure geometry. The surface color may be pale green for unsheltered areas, and green and mat black for sheltered areas [4]. Thus, in real outdoor bronze monuments, the corrosion behavior is strongly influenced by the exposure geometry. This must be taken into account when designing conservation procedures, since the patina is in most cases the support on which corrosion inhibitors are applied. Presently, for protecting outdoor bronzes against atmospheric corrosion, inhibitors and protective treatments are used. BTA and its derivatives, which are the most common inhibitors used for copper and its alloy, were found to be toxic for the environment and human health [5, 6]. Moreover, it has been demonstrated that BTA is efficient when applied on bare copper but not as efficient when applied on bare bronze [7]. Thus it was necessary to find alternative compounds. Silane-based inhibitors (already successfully tested on copper and other metallic substrates [8]), were taken into consideration as a non-toxic, environmentally friendly alternative to BTA derivatives for bronze protection. The purpose of this thesis was based on the assessment of the efficiency of a selected compound, to protect the bronze against corrosion, which is the 3-mercapto-propyl-trimethoxy-silane (PropS-SH). It was selected thanks to the collaboration with the Corrosion Studies Centre “Aldo Daccò” at the Università di Ferrara. Since previous studies [9, 10, 11] demonstrated that the addition of nanoparticles to silane-based inhibitors leads to an increase of the protective efficiency, we also wanted to evaluate the influence of the addition of CeO2, La2O3, TiO2 nanoparticles on the protective efficiency of 3-mercapto-propyl-trimethoxy-silane, applied on pre-patinated bronze surfaces. This study is the first section of the thesis. Since restorers have to work on patinated bronzes and not on bare metal (except for contemporary art), it is important to be able to recreate the patina, under laboratory conditions, either in sheltered or unsheltered conditions to test the coating and to obtain reliable results. Therefore, at the University of Bologna, different devices have been designed to simulate the real outdoor conditions and to create a patina which is representative of real application conditions of inhibitor or protective treatments. In particular, accelerated ageing devices by wet & dry (simulating the action of stagnant rain in sheltered areas [12]) and by dropping (simulating the leaching action of the rain in unsheltered areas [1]) tests were used. In the present work, we used the dropping test as a method to produce pre-patinated bronze surfaces for the application of a candidate inhibitor as well as for evaluating its protective efficiency on aged bronze (unsheltered areas). In this thesis, gilded bronzes were also studied. When they are exposed to the outside environment, a corrosion phenomenon appears which is due to the electrochemical couple gold/copper where copper is the anode. In the presence of an electrolyte, this phenomenon results in the formation of corrosion products than will cause a blistering of the gold (or a break-up and loss of the film in some cases). Moreover, because of the diffusion of the copper salts to the surface, aggregates and a greenish film will be formed on the surface of the sample [13]. By coating gilded samples with PropS-SH and PropS-SH containing nano-particles and carrying out accelerated ageing by the dropping test, a discussion is possible on the effectiveness of this coating, either with nano-particles or not, against the corrosion process. This part is the section 2 of this thesis. Finally, a discussion about laser treatment aiming at the assessment of reversibility/re-applicability of the PropS-SH coating can be found in section 3 of this thesis. Because the protective layer loses its efficiency with time, it is necessary to find a way of removing the silane layer, before applying a new one on the “bare” patina. One request is to minimize the damages that a laser treatment would create on the patina. Therefore, different laser fluences (energy/surface) were applied on the sample surface during the treatment process in order to find the best range of fluence. In particular, we made a characterization of surfaces before and after removal of PropS-SH (applied on a naturally patinated surface, and subsequently aged by natural exposure) with laser methods. The laser removal treatment was done by the CNR Institute of Applied Physics “Nello Carrara” of Sesto Fiorentino in Florence. In all the three sections of the thesis, a range of non-destructive spectroscopic methods (Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), μ-Raman spectroscopy, X-Ray diffractometry (XRD)) were used for characterizing the corroded surfaces. AAS (Atomic Absorption Spectroscopy) was used to analyze the ageing solutions from the dropping test in sections 1 and 2.
Resumo:
The main aim of my PhD project was the design and the synthesis of new pyrrolidine organocatalysts. New effective ferrocenyl pyrrolidine catalysts, active in benchmark organocatalytic reactions, has been developed. The ferrocenyl moiety, in combination with simple ethyl chains, is capable of fixing the enamine conformation addressing the approach trajectory of the nucleophile in the reaction. The results obtained represent an interesting proof-of-concept, showing for the first time the remarkable effectiveness of the ferrocenyl moiety in providing enantioselectivity through conformational selection. This approach could be viably employed in the rational design of ligands for metal or organocatalysts. Other hindered secondary amines has been prepared from alkylation of acyclic chiral nitroderivatives with alcohols in a highly diastereoselective fashion, giving access to functionalized, useful organocatalytic chiral pyrrolidines. A family of new pyrrolidines bearing sterogenic centers and functional groups can be readily accessible by this methodology. The second purpose of the project was to study in deep the reactivity of stabilized carbocations in new metal-free and organocatalytic reactions. By taking advantage of the results from the kinetic studies described by Mayr, a simple and effective procedure for the direct formylation of aryltetrafluoroborate salts, has been development. The coupling of a range of aryl- and heteroaryl- trifluoroborate salts with 1,3-benzodithiolylium tetrafluoroborate, has been attempted in moderate to good yields. Finally, a simple and general methodology for the enamine-mediated enantioselective α-alkylation of α-substituted aldehydes with 1,3-benzodithiolylium tetrafluoroborate has been reported. The introduction of the benzodithiole moiety permit the installation of different functional groups due to its chameleonic behaviour.
Resumo:
Il rumore causato dagli aeromobili nelle varie operazioni aeroportuali è uno dei problemi più sentiti dalle popolazioni che risiedono nelle aree adiacenti gli aeroporti.Nonostante i progressi fatti dal punto di vista tecnologico, che hanno portato a una notevole riduzione del fenomeno, il continuo aumento della domanda di traffico aereo ha ridotto l’efficacia di queste migliorie tecniche, anche a causa di una scarsa pianificazione territoriale nel corso degli anni. Ci sono numerosi interventi possibili per ridurre l'inquinamento acustico, in questa tesi vengono analizzate in special modo le NAP e la loro applicazione al caso dell'aeroporto di Bologna.
Resumo:
The aim of the research activity focused on the investigation of the correlation between the degree of purity in terms of chemical dopants in organic small molecule semiconductors and their electrical and optoelectronic performances once introduced as active material in devices. The first step of the work was addressed to the study of the electrical performances variation of two commercial organic semiconductors after being processed by means of thermal sublimation process. In particular, the p-type 2,2′′′-Dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene (DH4T) semiconductor and the n-type 2,2′′′- Perfluoro-Dihexyl-2,2′:5′,2′′:5′′,2′′′-quaterthiophene (DFH4T) semiconductor underwent several sublimation cycles, with consequent improvement of the electrical performances in terms of charge mobility and threshold voltage, highlighting the benefits brought by this treatment to the electric properties of the discussed semiconductors in OFET devices by the removal of residual impurities. The second step consisted in the provision of a metal-free synthesis of DH4T, which was successfully prepared without organometallic reagents or catalysts in collaboration with Dr. Manuela Melucci from ISOF-CNR Institute in Bologna. Indeed the experimental work demonstrated that those compounds are responsible for the electrical degradation by intentionally doping the semiconductor obtained by metal-free method by Tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) and Tributyltin chloride (Bu3SnCl), as well as with an organic impurity, like 5-hexyl-2,2':5',2''-terthiophene (HexT3) at, in different concentrations (1, 5 and 10% w/w). After completing the entire evaluation process loop, from fabricating OFET devices by vacuum sublimation with implemented intentionally-doped batches to the final electrical characterization in inherent-atmosphere conditions, commercial DH4T, metal-free DH4T and the intentionally-doped DH4T were systematically compared. Indeed, the fabrication of OFET based on doped DH4T clearly pointed out that the vacuum sublimation is still an inherent and efficient purification method for crude semiconductors, but also a reliable way to fabricate high performing devices.
Resumo:
In the current study, we analyze the effectiveness of an organosilane compound, 3-mercapto-propyl-tri-methoxy-silane (abbreviated PropS-SH), in the corrosion protection of fire-gilded bronzes. Firstly, the coating was applied on as-gilded bronze. Subsequently, it was also applied on pre-patinated bronze, because the substrate on which protective coatings are applied in real conservation interventions are corroded artifacts (cleaning procedures never remove all the corrosion products). Aiming to obtain results that simulate the situation of real artifacts, a dropping test that simulates outdoor exposure in runoff conditions (unsheltered areas of monuments) was employed in order to prepatinate the gilded bronze samples, which are the substrate for applying the protective coating. The preparation of the samples by applying the protective coating was performed in collaboration with the Corrosion Studies Centre “Aldo Daccò” from Ferrara University. After the artificial exposure cycles the samples underwent investigations through a variety of spectroscopic methods including SEM, Raman, FIB, AAS and color measurements. In order to evaluate the possible removal of the organosilane coating, protected samples were subjected to laser cleaning tests and characterized by SEM/EDS so as to assess the changes in composition and morphology of the treated surfaces. The laser cleaning treatment was performed at the Institute of Applied Physics “Nello Carrara” (CNR Sesto Fiorentino (FI)). The morphology and chemical composition of the samples was observed before and after the operation in order to obtain information about the fluence and type of laser which are best suited to the removal of this type of coating.
Resumo:
In this thesis, new advances in the development of spectroscopic based methods for the characterization of heritage materials have been achieved. As concern FTIR spectroscopy new approaches aimed at exploiting near and far IR region for the characterization of inorganic or organic materials have been tested. Paint cross-section have been analysed by FTIR spectroscopy in the NIR range and an “ad hoc” chemometric approach has been developed for the elaboration of hyperspectral maps. Moreover, a new method for the characterization of calcite based on the use of grinding curves has been set up both in MIR and in FAR region. Indeed, calcite is a material widely applied in cultural heritage, and this spectroscopic approach is an efficient and rapid tool to distinguish between different calcite samples. Different enhanced vibrational techniques for the characterisation of dyed fibres have been tested. First a SEIRA (Surface Enhanced Infra-Red Absorption) protocol has been optimised allowing the analysis of colorant micro-extracts thanks to the enhancement produced by the addition of gold nanoparticles. These preliminary studies permitted to identify a new enhanced FTIR method, named ATR/RAIRS, which allowed to reach lower detection limits. Regarding Raman microscopy, the research followed two lines, which have in common the aim of avoiding the use of colloidal solutions. AgI based supports obtained after deposition on a gold-coated glass slides have been developed and tested spotting colorant solutions. A SERS spectrum can be obtained thanks to the photoreduction, which the laser may induce on the silver salt. Moreover, these supports can be used for the TLC separation of a mixture of colorants and the analyses by means of both Raman/SERS and ATR-RAIRS can be successfully reached. Finally, a photoreduction method for the “on fiber” analysis of colorant without the need of any extraction have been optimised.
Resumo:
The development of procedures for the iridium catalyzed C-H borylation of 1-aryl pyrazolopyrimidines and 1-aryl indazoles is reported. Investigation on the activity of the catalyst revealed the combination of an iridium (I) precursor and tetramethylphenantroline as the best catalytic system. Moreover, the procedures are regioselective resulting in the selective borylation of different C-H bonds within the substrates. The application of C-H borylation to late stage functionalization is demonstrated: a biologically active compound in AstraZeneca's project underwent tandem borylation/oxidation reaction, in order to obtain a functionalized product containing an OH group.
Resumo:
A partire dalle caratteristiche chiave dell’inquinamento acustico, lo scopo della tesi è stato quello di valutare quantitativamente l’entità del rumore aeronautico prodotto dall'aeroporto Marconi e di analizzare le soluzioni tecniche e gestionali disponibili per definire misure adeguate alle caratteristiche infrastrutturali e operative dello scalo e capaci di mitigare il disturbo subito dalla popolazione. Si è tenuto conto delle profonde modificazioni in atto nel mondo dell’aviazione, il quale, avendo come obiettivo quello di fornire un servizio di trasporto sempre più sostenibile, efficace, competitivo e omogeneo sul territorio europeo, sollecita profonde innovazioni nei requisiti funzionali e tecnici. Inizialmente l’attenzione è stata rivolta alla descrizione del rumore aeronautico e del contesto in cui è inserito, soffermandosi sul concetto di sostenibilità di un’infrastruttura di trasporto. Si è proseguito con un'analisi dettagliata della normativa vigente, italiana ed europea, al fine di affrontare gli aspetti legislativi del problema e di delineare le line guida per la valutazione del rumore. Segue uno studio, dal punto di vista tecnico e infrastrutturale, dell’evoluzione della navigazione aerea e del concetto innovativo di performance based navigation, focalizzando l’interesse sul curved approach, procedura di avvicinamento non convenzionale. L'attenzione è stata, poi, dedicata alla descrizione del caso di studio e alla presentazione della metodologia usata. Mediante il supporto dell’INM, sono state determinate le curve isofoniche, quantificando la popolazione esposta a specifici livelli di rumore aeronautico per lo scenario consuntivo dell’anno 2015. Infine, sono state eseguite simulazioni future, sulla base delle previsioni di crescita del volume di traffico aereo, per definire un limite massimo per lo sfruttamento del sistema ILS in testata 30 e per valutare il beneficio generato dall’introduzione del curved approach.
Resumo:
The goals of any treatment of cervical spine injuries are: return to maximum functional ability, minimum of residual pain, decrease of any neurological deficit, minimum of residual deformity and prevention of further disability. The advantages of surgical treatment are the ability to reach optimal reduction, immediate stability, direct decompression of the cord and the exiting roots, the need for only minimum external fixation, the possibility for early mobilisation and clearly decreased nursing problems. There are some reasons why those goals can be reached better by anterior surgery. Usually the bony compression of the cord and roots comes from the front therefore anterior decompression is usually the procedure of choice. Also, the anterior stabilisation with a plate is usually simpler than a posterior instrumentation. It needs to be stressed that closed reduction by traction can align the fractured spine and indirectly decompress the neural structures in about 70%. The necessary weight is 2.5 kg per level of injury. In the upper cervical spine, the odontoid fracture type 2 is an indication for anterior surgery by direct screw fixation. Joint C1/C2 dislocations or fractures or certain odontoid fractures can be treated with a fusion of the C1/C2 joint by anterior transarticular screw fixation. In the lower and middle cervical spine, anterior plating combined with iliac crest or fibular strut graft is the procedure of choice, however, a solid graft can also be replaced by filled solid or expandable vertebral cages. The complication of this surgery is low, when properly executed and anterior surgery may only be contra-indicated in case of a significant lesion or locked joints.