389 resultados para CEO2


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CO2 reforming of CH4 was carried out over Ni catalysts supported on γ-Al2O3 and CeO 2-promoted γ-Al2O3. The catalysts were characterized by means of surface area measurements, TPR, CO2 and H2 chemisorption, XRD, SEM, and TEM. The CeO2 addition promoted an increase of catalytic activity and stability. The improvement in the resistance to carbon deposition is attributed to the highest CO2 adsorption presented by the CeO2 addition. The catalytic behavior presented by the samples, with a different CH4/CO2 ratio used, points to the CH4 decomposition reaction as the main source of carbon deposition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid-state compounds with a general formula of LnL3· nH2O, where Ln stands for lighter trivalent lanthanides (lanthanum to samarium), L is 2-methoxybenzylidenepyruvate and n=1.5, 2, 2, 1.5 and 2, respectively, have been synthesized. On heating these compounds are decompose in two or three steps. They lose their hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of the respective oxide, CeO2, Pr6O11 and Ln 2O3 (Ln=La, Nd, Sm) as final residue. The dehydration enthalpies found for these compounds (La to Sm) were: 222.7, 163.6, 497.7, 513.9 and 715.4 kJ mol-1, respectively. © 2005 Akadémiai Kiadó, Budapest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid compounds of general formula LnL3 for La and Ce and LnL3·nH2O for Pr, Nd and Sm where Ln stands for trivalent lanthanides, L is 2-chlorobenzylidenepyruvate and n=2, 3 and 2 respectively, have been synthesized. On heating these compounds decompose in two or five steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds occurs with the formation of the respective oxide, CeO2, Pr6O11 and Ln 2O3 (Ln=La, Nd, Sm) as final residue. The dehydration enthalpies found for these compounds (Pr, Nd and Sm) were: 140.1, 148.2 and 221.3 kJ mol-1, respectively. © 2005 Akadémiai Kiadó, Budapest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid-state LnL3·1.25H2O compounds, where L is oxamate and Ln is light trivalent lanthanides, have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), experimental and theoretical infrared spectroscopy, TG-DSC coupled to FTIR, elemental analysis, complexometry, and X-ray powder diffractometry were used to characterize and to study the thermal behavior of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition, and gaseous products evolved during the thermal decomposition of these compounds in dynamic air atmosphere. The dehydration occurs in a single step and through a slow process. The thermal decomposition of the anhydrous compounds occur in a single (Ce), two (Pr), and three (La, Nd to Gd) steps with the formation of the respective oxides, CeO2, Pr 6O11, and Ln2O3 (Ln = La, Nd to Gd). The theoretical and experimental spectroscopic study suggests that the carboxylate group and amide carbonyl group of oxamate are coordinate to the metals in a bidentate chelating mode. © 2012 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation on the sinterization of Gd:CeO2 (Ce 0.85Gd0.15O1.9-δ ceramic system) 3-10 nm nanoparticles in pressed bodies was done. The heating rate was taken as a key parameter and two competing sinterization processes were identified, associated with different diffusional mechanisms. Using heating rates of 113 C min -1, a high-final density (98 % of the theoretical) was obtained by superposing the two aforementioned mechanisms, resulting in a homogeneous microstructure at lower temperatures. © 2012 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystalline ceria (CeO2) nanoparticles have been synthesized by a simple and fast microwave-assisted hydrothermal (MAH) under NaOH, KOH, and NH4OH mineralizers added to a cerium ammonium nitrate aqueous solution. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transformed-IR and Raman spectroscopies. Rietveld refinement reveals a cubic structure with a space group Fm3m while infrared data showed few traces of nitrates. Field emission scanning microcopy (FEG-SEM) revealed a homogeneous size distribution of nanometric CeO2 nanoparticles. The MAH process in KOH and NaOH showed most effective to dehydrate the adsorbed water and decrease the hydrogen bonding effect leaving a weakly agglomerated powder of hydrated ceria. TEM micrographs of CeO2 synthesized under MAH conditions reveal particles well-dispersed and homogeneously distributed. The MAH enabled cerium oxide to be synthesized at 100 °C for 8 min. © 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studied the degradation of dipyrone, via electrochemical processes and via electro-Fenton reaction using a 4% CeO2/C gas diffusion electrode (GDE) prepared via modified polymeric precursor method. This material was used to electrochemically generate H2O2 through oxygen reduction. The mean crystallite sizes estimated by the Scherrer equation for 4% CeO2/C were 4 nm for CeO2-x (0 4 4) and 5 nm for CeO2 (1 1 1) while using transmission electron microscopy (TEM) the mean nanoparticle size was 5.4 nm. X-ray photoelectron spectroscopy (XPS) measurements revealed nearly equal concentrations of Ce(III) and Ce(IV) species on carbon, which contained high oxygenated acid species like CO and OCO. Electrochemical degradation using Vulcan XC 72R carbon showed that the dipyrone was not removed during the two hour electrolysis in all applied potentials by electro-degradation. Besides, when the Fenton process was employed the degradation was much similar when using cerium catalysts but the mineralization reaches just to 50% at -1.1 V. However, using the CeO2/C GDE, in 20 min all of the dipyrone was degraded with 26% mineralization at -1.3 V and when the Fenton process was employed, all of the dipyrone was removed after 5 min with 57% mineralization at -1.1 V. Relative to Vulcan XC72R, ceria acts as an oxygen buffer leading to an increase in the local oxygen concentration, facilitating H2O2 formation and consequently improving the dipyrone degradation © 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural and photoluminescence properties at room temperature of CeO2 nanoparticles synthesized by a microwave-assisted hydrothermal method (MAH) under different soaking times on KOH mineralizer added to a cerium ammonium nitrate aqueous solution were undertaken. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and photoluminescence (PL) measurements were employed. XRD revealed that the nanoparticles are free of secondary phases and crystallize in the cubic structure. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. The most intense PL emission was obtained for nanoparticles which represent a lower particle size. © 2013 Elsevier Ltd and Techna Group S.r.l.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal and spectroscopic studies on solid trivalent lanthanides and yttrium(III) α-hydroxyisobutyrates, Ln(C4H7O 3)3·nH2O were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA), elemental analysis, X-ray diffractometry, complexometry, experimental and theoretical infrared spectroscopy and TG-DSC coupled to FTIR. The dehydration of lanthanum to neodymium and terbium to thulium and yttrium compounds occurs in a single step while for samarium, europium and gadolinium ones it occurs in three consecutives steps. Ytterbium and lutetium compounds were obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occursin two consecutives steps, except lanthanum (five steps) and cerium (single step), with formation of the respective oxides CeO2, Pr6O 11, Tb4O7 and Ln2O3 (Ln = La, Nd to Lu and Y), as final residue. The resultsalso provided information concerning the composition, thermal behavior, crystallinity and gaseous products evolved during the thermal decomposition. The theoretical and experimental spectroscopic data suggested the possible modes of coordination of the ligand with the lanthanides.© 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the influence of the preparation method and the carbon support using a low contentof cerium oxide nanoparticles (CeO2/C 4%) on H2O2electrogeneration via the oxygen reduction reac-tion (ORR). For this purpose, the polymeric precursor (PPM) and sol-gel (SGM) methods with Vulcan XC72R (V) and Printex L6 (P) supports were employed. The materials were characterized by X-ray diffrac-tion (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). TheXRD analysis identified two phases comprising CeO2and CeO 2-x. The smallest mean crystallite size wasexhibited for the 4% CeO2/C PPM P material, which was estimated using the Debye-Scherrer equation tobe 6 nm and 4 nm for the CeO2and the CeO 2-xphases, respectively, and was determined by TEM to be5.9 nm. XPS analysis was utilized to compare the oxygen content of the 4% CeO2/C PPM P to Printex L6.The electrochemical analysis was accomplished using a rotating ring-disk electrode. The results showedthat the 4% CeO2/C specimen, prepared by PPM and supported on Printex L6, was the best electrocatalystfor H2O2production in 1 mol L -1NaOH. This material showed the highest ring current, producing 88%H2O2and transferring 2.2 electrons per O 2molecule via the ORR at the lowest onset potential. Addition-ally, the ring-current of the 4% CeO2/C PPM P material was higher than that of Vulcan XC 72R and PrintexL6, the reference materials for H2O 2production, indicating the highest electrocatalytic activity for the 4%CeO2/C PPM P material. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structural and photoluminescent properties at room temperature of CeO2 nanoparticles synthesized by a Microwave-Assisted Hydrothermal Method (MAH) under different praseodymium contents was undertaken. X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), UV-vis Spectroscopy (UV-vis), Fourier Transform Raman (FT-Raman) and Photoluminescence (PL) measurements were employed. XRD revealed that the nanoparticles are free of secondary phases and crystallize in the cubic structure while FT-Raman revealed a typical scattering mode of fluorite type. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. The most intense PL emission was obtained for nanoparticles which represent a lower particle size. © 2013 Elsevier Ltd and Techna Group S.r.l.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)