992 resultados para CEARA CENTRAL DOMAIN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

O Grupo Iricoumé compreende rochas vulcânicas efusivas e piroclásticas, com texturas e estruturas bastante preservadas, que pertence a um extenso evento vulcano-plutônico que marcou a região central do Cráton Amazônico durante o Orosiriano. Tais rochas estão expostas no noroeste do estado do Pará, na porção meridional do sudoeste do Domínio Erepecuru-Trombetas, sul do Escudo das Guianas. Estudos petrográficos permitiram distinguir um vulcanismo explosivo, predominante e representado por rochas piroclásticas (ignimbritos, reoignimbritos, tufo coignimbrítico de queda e lápili-tufo relacionado a surge), e um efusivo, subordinado, representado por fluxos de lavas coerentes e rochas hipabissais (andesitos, lamprófiros espessartíticos e latitos). A maioria das rochas piroclásticas exibe feições diagnósticas da deposição dos piroclastos sob altas temperaturas, sugerindo que as rochas vulcânicas estão provavelmente relacionadas a ambientes de geração de caldeiras. As idades Pb-Pb de 1888 ± 2,5 e 1889 ± 2 Ma obtidas em zircão de ignimbritos traquidacíticos confirmam que a maioria das rochas estudadas pertence ao Grupo Iricoumé. Por outro lado, a idade Pb-Pb de 1992 ± 3 Ma obtida em zircão de um andesito evidencia um episódio vulcânico efusivo orosiriano mais antigo, já reconhecido, localmente, mais a sul, no Domínio Tapajós. Os dados obtidos demonstram a ampla extensão do vulcanismo Iricoumé e rochas vulcânicas correlatas na porção central do Cráton Amazônico, e constituem argumentos favoráveis para associar esse episódio vulcânico e rochas magmáticas correlatas a uma silicic large igneous province (SLIP), como já vem sendo descrito por alguns autores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processo FAPESP: 08/50167-6

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Septins form a conserved family of filament forming GTP binding proteins found in a wide range of eukaryotic cells. They share a common structural architecture consisting of an N-terminal domain, a central GTP binding domain and a C-terminal domain, which is often predicted to adopt a coiled-coil conformation, at least in part. The crystal structure of the human SEPT2/SEPT6/SEPT7 heterocomplex has revealed the importance of the GTP binding domain in filament formation, but surprisingly no electron density was observed for the C-terminal domains and their function remains obscure. The dearth of structural information concerning the C-terminal region has motivated the present study in which the putative C-terminal domains of human SEPT2, SEPT6 and SEPT7 were expressed in E. coli and purified to homogeneity. The thermal stability and secondary structure content of the domains were studied by circular dichroism spectroscopy, and homo- and hetero-interactions were investigated by size exclusion chromatography, chemical cross-linking, analytical ultracentrifugation and surface plasmon resonance. Our results show that SEPT6-C and SEPT7-C are able to form both homo- and heterodimers with a high alpha-helical content in solution. The heterodimer is elongated and considerably more stable than the homodimers, with a K (D) of 15.8 nM. On the other hand, the homodimer SEPT2-C has a much lower affinity, with a K (D) of 4 mu M, and a moderate alpha-helical content. Our findings present the first direct experimental evidence toward better understanding the biophysical properties and coiled-coil pairings of such domains and their potential role in filament assembly and stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein folding, refolding and degradation are essential for cellular life and are regulated by protein homeostatic processes such those that involve the molecular chaperone DnaK/Hsp70 and its co-chaperone DnaJ. Hsp70 action is initiated when proteins from the DnaJ family bind an unfolded protein for delivery purposes. In eukaryotes, the DnaJ family can be divided into two main groups, Type I and Type II, represented by yeast cytosolic Ydj1 and Sis1, respectively. Although sharing some unique features both members of the DnaJ family, Ydj1 and Sis1 are structurally and functionally distinct as deemed by previous studies, including the observation that their central domains carry the structural and functional information even in switched chimeras. In this study, we combined several biophysical tools for evaluating the stability of Sis1 and mutants that had the central domains (named Gly/Met rich domain and C-terminal Domain I) deleted or switched to those of Ydj1 to gain insight into the role of these regions in the structure and function of Sis1. The mutants retained some functions similar to full length wild-type Sis1, however they were defective in others. We found that: 1) Sis1 unfolds in at least two steps as follows: folded dimer to partially folded monomer and then to an unfolded monomer. 2) The Gly/Met rich domain had intrinsically disordered characteristics and its deletion had no effect on the conformational stability of the protein. 3) The deletion of the C-terminal Domain I perturbed the stability of the dimer. 4) Exchanging the central domains perturbed the conformational stability of the protein. Altogether, our results suggest the existence of two similar subdomains in the C-terminal domain of DnaJ that could be important for stabilizing each other in order to maintain a folded substrate-binding site as well as the dimeric state of the protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Aedes aegypti mosquitoes are the main vectors of dengue viruses. Despite global efforts to reduce the prevalence of dengue using integrated vector management strategies, innovative alternatives are necessary to help prevent virus transmission. Detailed characterizations of Ae. aegypti genes and their products provide information about the biology of mosquitoes and may serve as foundations for the design of new vector control methods. FINDINGS: We studied the Ae. aegypti gene, AAEL010714, that encodes a two-domain odorant-binding protein, AaegOBP45. The predicted gene structure and sequence were validated, although single nucleotide polymorphisms were observed. Transcriptional and translational products accumulate in the ovaries of blood fed females and are not detected or are at low abundance in other tissues. CONCLUSIONS: We validated the Ae. aegypti AAEL010714 gene sequence and characterized the expression profile of a two-domain OBP expressed in ovaries. We propose that AaegOBP45 function as a component of the mosquito eggshell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations on formation and specification of neural precursor cells in the central nervous system of the Drosophila melanogaster embryoSpecification of a unique cell fate during development of a multicellular organism often is a function of its position. The Drosophila central nervous system (CNS) provides an ideal system to dissect signalling events during development that lead to cell specific patterns. Different cell types in the CNS are formed from a relatively few precursor cells, the neuroblasts (NBs), which delaminate from the neurogenic region of the ectoderm. The delamination occurs in five waves, S1-S5, finally leading to a subepidermal layer consisting of about 30 NBs, each with a unique identity, arranged in a stereotyped spatial pattern in each hemisegment. This information depends on several factors such as the concentrations of various morphogens, cell-cell interactions and long range signals present at the position and time of its birth. The early NBs, delaminating during S1 and S2, form an orthogonal array of four rows (2/3,4,5,6/7) and three columns (medial, intermediate, and lateral) . However, the three column and four row-arrangement pattern is only transitory during early stages of neurogenesis which is obscured by late emerging (S3-S5) neuroblasts (Doe and Goodman, 1985; Goodman and Doe, 1993). Therefore the aim of my study has been to identify novel genes which play a role in the formation or specification of late delaminating NBs.In this study the gene anterior open or yan was picked up in a genetic screen to identity novel and yet unidentified genes in the process of late neuroblast formation and specification. I have shown that the gene yan is responsible for maintaining the cells of the neuroectoderm in an undifferentiated state by interfering with the Notch signalling mechanism. Secondly, I have studied the function and interactions of segment polarity genes within a certain neuroectodermal region, namely the engrailed (en) expressing domain, with regard to the fate specification of a set of late neuroblasts, namely NB 6-4 and NB 7-3. I have dissected the regulatory interaction of the segment polarity genes wingless (wg), hedgehog (hh) and engrailed (en) as they maintain each other’s expression to show that En is a prerequisite for neurogenesis and show that the interplay of the segmentation genes naked (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment of NB 7-3 and NB 6-4 cell fate. I have shown that in the absence of either nkd or gsb one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plectin is a versatile cytolinker protein critically involved in the organization of the cytoskeletal filamentous system. The muscle-specific intermediate filament (IF) protein desmin, which progressively replaces vimentin during differentiation of myoblasts, is one of the important binding partners of plectin in mature muscle. Defects of either plectin or desmin cause muscular dystrophies. By cell transfection studies, yeast two-hybrid, overlay and pull-down assays for binding analysis, we have characterized the functionally important sequences for the interaction of plectin with desmin and vimentin. The association of plectin with both desmin and vimentin predominantly depended on its fifth plakin repeat domain and downstream linker region. Conversely, the interaction of desmin and vimentin with plectin required sequences contained within the segments 1A-2A of their central coiled-coil rod domain. This study furthers our knowledge of the interaction between plectin and IF proteins important for maintenance of cytoarchitecture in skeletal muscle. Moreover, binding of plectin to the conserved rod domain of IF proteins could well explain its broad interaction with most types of IFs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent decades have seen both what has been referred to as an "inflation of historical monuments" and an acceleration of the process of "monumentification" affecting buildings of relatively recent date. In order to gain a better understanding of this, Kovacs looked at the experience in countries of Central Europe (Romania, Hungary, Slovenia, the Czech Lands, Slovakia), discovering a number of similarities as well as differences in detail. More important, however, was the discovery of the much wider importance of this phenomenon as a whole, which is particularly visible in this part of Europe, where "European" theory and practice of monument preservation are combined with progressivist demolitionism and traditional "natural" attitudes towards the built environment. Kovacs found that monument preservation has not only become a major occupation within building activity seen as a matter of anthropology, but also seems to be the determining feature of the contemporary cultural attitude. The scale of preservation activity has long since reached the level of urban design as an essential criterion for matters of future development, making it necessary to extend the conclusions of theoretical research down to broader generalities of the building domain. Kovacs then looked at the specific features of the countries concerned, including the survival of traditional building techniques in Romania, and the wide variety of preservationist policies in use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: FGFRL1, the gene for the fifth member of the fibroblast growth factor receptor (FGFR) family, is found in all vertebrates from fish to man and in the cephalochordate amphioxus. Since it does not occur in more distantly related invertebrates such as insects and nematodes, we have speculated that FGFRL1 might have evolved just before branching of the vertebrate lineage from the other invertebrates (Beyeler and Trueb, 2006). RESULTS: We identified the gene for FGFRL1 also in the sea urchin Strongylocentrotus purpuratus and cloned its mRNA. The deduced amino acid sequence shares 62% sequence similarity with the human protein and shows conservation of all disulfides and N-linked carbohydrate attachment sites. Similar to the human protein, the S. purpuratus protein contains a histidine-rich motif at the C-terminus, but this motif is much shorter than the human counterpart. To analyze the function of the novel motif, recombinant fusion proteins were prepared in a bacterial expression system. The human fusion protein bound to nickel and zinc affinity columns, whereas the sea urchin protein barely interacted with such columns. Direct determination of metal ions by atomic absorption revealed 2.6 mole zinc/mole protein for human FGFRL1 and 1.7 mole zinc/mole protein for sea urchin FGFRL1. CONCLUSION: The FGFRL1 gene has evolved much earlier than previously assumed. A comparison of the intracellular domain between sea urchin and human FGFRL1 provides interesting insights into the shaping of a novel zinc binding domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionotropic glutamate receptors are important excitatory neurotransmitter receptors in the mammalian central nervous system that have been implicated in a number of neuropathologies such as epilepsy, ischemia, and amyotrophic lateral sclerosis. Glutamate binding to an extracellular ligand binding domain initiates a series of structural changes that leads to the formation of a cation selective transmembrane channel, which consequently closes due to desensitization of the receptor. The crystal structures of the AMPA subtype of the glutamate receptor have been particularly useful in providing initial insight into the conformational changes in the ligand binding domain; however, these structures are limited by crystallographic constraint. To gain a clear picture of how agonist binding is coupled to channel activation and desensitization, it is essential to study changes in the ligand binding domain in a dynamic, physiological state. In this dissertation, a technique called Luminescence Resonance Energy Transfer was used to determine the conformational changes associated with activation and desensitization in a functional AMPA receptor (ÄN*-AMPA) that contains the ligand binding domain and transmembrane segments; ÄN*-AMPA has been modified such that fluorophores can be introduced at specific sites to serve as a readout of cleft closure or to establish intersubunit distances. Previous structural studies of cleft closure of the isolated ligand binding domain in conjunction with functional studies of the full receptor suggest that extent of cleft closure correlates with extent of activation. Here, LRET has been used to show that a similar relationship between cleft closure and activation is observed in the “full length” receptor showing that the isolated ligand binding domain is a good model of the domain in the full length receptor for changes within a subunit. Similar LRET investigations were used to study intersubunit distances specifically to probe conformational changes between subunits within a dimer in the tetrameric receptor. These studies show that the dimer interface is coupled in the open state, and decoupled in the desensitized state, similar to the isolated ligand binding domain crystal structure studies. However, we show that the apo state dimer interface is not pre-formed as in the crystal structure, hence suggesting a mechanism for functional transitions within the receptor based on LRET distances obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The family of membrane protein called glutamate receptors play an important role in the central nervous system in mediating signaling between neurons. Glutamate receptors are involved in the elaborate game that nerve cells play with each other in order to control movement, memory, and learning. Neurons achieve this communication by rapidly converting electrical signals into chemical signals and then converting them back into electrical signals. To propagate an electrical impulse, neurons in the brain launch bursts of neurotransmitter molecules like glutamate at the junction between neurons, called the synapse. Glutamate receptors are found lodged in the membranes of the post-synaptic neuron. They receive the burst of neurotransmitters and respond by fielding the neurotransmitters and opening ion channels. Glutamate receptors have been implicated in a number of neuropathologies like ischemia, stroke and amyotrophic lateral sclerosis. Specifically, the NMDA subtype of glutamate receptors has been linked to the onset of Alzheimer’s disease and the subsequent degeneration of neuronal cells. While crystal structures of AMPA and kainate subtypes of glutamate receptors have provided valuable information regarding the assembly and mechanism of activation; little is known about the NMDA receptors. Even the basic question of receptor assembly still remains unanswered. Therefore, to gain a clear understanding of how the receptors are assembled and how agonist binding gets translated to channel opening, I have used a technique called Luminescence Resonance Energy Transfer (LRET). LRET offers the unique advantage of tracking large scale conformational changes associated with receptor activation and desensitization. In this dissertation, LRET, in combination with biochemical and electrophysiological studies, were performed on the NMDA receptors to draw a correlation between structure and function. NMDA receptor subtypes GluN1 and GluN2A were modified such that fluorophores could be introduced at specific sites to determine their pattern of assembly. The results indicated that the GluN1 subunits assembled across each other in a diagonal manner to form a functional receptor. Once the subunit arrangement was established, this was used as a model to further examine the mechanism of activation in this subtype of glutamate receptor. Using LRET, the correlation between cleft closure and activation was tested for both the GluN1 and GluN2A subunit of the NMDA receptor in response to agonists of varying efficacies. These investigations revealed that cleft closure plays a major role in the mechanism of activation in the NMDA receptor, similar to the AMPA and kainate subtypes. Therefore, suggesting that the mechanism of activation is conserved across the different subtypes of glutamate receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spinal muscular atrophy (SMA) is characterized by motoneuron loss and muscle weakness. However, the structural and functional deficits that lead to the impairment of the neuromuscular system remain poorly defined. By electron microscopy, we previously found that neuromuscular junctions (NMJs) and muscle fibres of the diaphragm are among the earliest affected structures in the severe mouse SMA model. Because of certain anatomical features, i.e. its thinness and its innervation from the cervical segments of the spinal cord, the diaphragm is particularly suitable to characterize both central and peripheral events. Here we show by immunohistochemistry that, at postnatal day 3, the cervical motoneurons of SMA mice receive less stimulatory synaptic inputs. Moreover, their mitochondria become less elongated which might represent an early stage of degeneration. The NMJs of the diaphragm of SMA mice show a loss of synaptic vesicles and active zones. Moreover, the partly innervated endplates lack S100 positive perisynaptic Schwann cells (PSCs). We also demonstrate the feasibility of comparing the proteomic composition between diaphragm regions enriched and poor in NMJs. By this approach we have identified two proteins that are significantly upregulated only in the NMJ-specific regions of SMA mice. These are apoptosis inducing factor 1 (AIFM1), a mitochondrial flavoprotein that initiates apoptosis in a caspase-independent pathway, and four and a half Lim domain protein 1 (FHL1), a regulator of skeletal muscle mass that has been implicated in several myopathies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To differentiate diabetic macular edema (DME) from pseudophakic cystoid macular edema (PCME) based solely on spectral-domain optical coherence tomography (SD-OCT). METHODS: This cross-sectional study included 134 participants: 49 with PCME, 60 with DME, and 25 with diabetic retinopathy (DR) and ME after cataract surgery. First, two unmasked experts classified the 25 DR patients after cataract surgery as either DME, PCME, or mixed-pattern based on SD-OCT and color-fundus photography. Then all 134 patients were divided into two datasets and graded by two masked readers according to a standardized reading-protocol. Accuracy of the masked readers to differentiate the diseases based on SD-OCT parameters was tested. Parallel to the masked readers, a computer-based algorithm was established using support vector machine (SVM) classifiers to automatically differentiate disease entities. RESULTS: The masked readers assigned 92.5% SD-OCT images to the correct clinical diagnose. The classifier-accuracy trained and tested on dataset 1 was 95.8%. The classifier-accuracy trained on dataset 1 and tested on dataset 2 to differentiate PCME from DME was 90.2%. The classifier-accuracy trained and tested on dataset 2 to differentiate all three diseases was 85.5%. In particular, higher central-retinal thickness/retinal-volume ratio, absence of an epiretinal-membrane, and solely inner nuclear layer (INL)-cysts indicated PCME, whereas higher outer nuclear layer (ONL)/INL ratio, the absence of subretinal fluid, presence of hard exudates, microaneurysms, and ganglion cell layer and/or retinal nerve fiber layer cysts strongly favored DME in this model. CONCLUSIONS: Based on the evaluation of SD-OCT, PCME can be differentiated from DME by masked reader evaluation, and by automated analysis, even in DR patients with ME after cataract surgery. The automated classifier may help to independently differentiate these two disease entities and is made publicly available.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Notch signaling pathway plays a central role in metazoan growth and patterning, and its deregulation leads to many human diseases, including cancer. It is therefore important to understand the modes of Notch signaling regulation. Recent discoveries have demonstrated that mutations in conserved endosomal pathway components such as Erupted and Vps25 can ectopically activate Notch signaling in Drosophila. Mutations in the tumor suppressor lethal giant discs (lgd) display similar but even stronger and more specific Notch activation than in the erupted and vps25 mutant animals. This Notch activation in lgd mutant tissues causes hyperplastic overgrowth of the Drosophila imaginal discs, and the eventual lethality of the animal. However, the gene that encodes Lgd, and its function in the Notch pathway have not yet been identified. ^ I have found that Lgd is a novel, conserved C2 domain protein that regulates Notch trafficking. Lgd cell-autonomously restricts Notch signaling in the Drosophila wing disc to the target cells in the D/V boundary. The function of Lgd lies at or upstream of Notch S3 activation, but Lgd doesn't affect the binding affinities between Notch and Delta. Lgd is also not required for cis-inhibition of Notch signaling by ligands. Notch accumulates on the early endosome in lgd mutant cells and signals in a ligand-independent manner, a result that has previously been seen in endosomal pathway mutants. Interestingly, Notch activation in lgd mutant cells is dependent on the endosomal protein Hrs, and Lgd activity appears to be downstream of Hrs function in endocytosis. Taken together, my data identify Lgd as a novel tumor suppressor protein that regulates Notch signaling by targeting Notch for degradation or recycling. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Portneuf-Mauricie Domain (PMD), located in the south-central part of the Grenville Province, comprises several mafic and ultramafic intrusions hosting Ni-Cu ± platinum-group element (PGE) prospects and a former small mining operation (Lac Édouard mine). These meter- to kilometer-scale, sulfide-bearing intrusions display diverse forms, such as layered and tabular bodies with no particular internal structure, and zoned plutons. They were injected ~ 1.40 Ga into a mature oceanic arc, before and during accretion of the arc to the Laurentian margin. The pressure-temperature conditions of the magmas at the beginning of their emplacement were 3 kbar and 1319-1200 °C (according to the petrologic modeling results from this study). The PMD mineralized intrusions are interpreted to represent former magma chambers or magma conduits in the roots of the oceanic arc. The parent magmas of the mineralized intrusions resulted mainly from the partial melting of a mantle source composed of spinel-bearing lherzolite. Petrologic modeling and the occurrence of primary amphibole in the plutonic rocks indicate that these parent melts were basaltic and hydrous. In addition, fractional crystallization modeling and Mg/Fe ratios suggest that most of the intrusions may have formed from evolved magmas, with Mg# = 60, resulting from the fractionation of more primitive magmas (primary magmas, with Mg# = 68). Petrologic modeling demonstrates that 30% fractional crystallization resulted in the primitive to evolved characteristics of the studied intrusive rocks (as indicated by the crystallization sequences and mineral chemistry). Exceptions are the Réservoir Blanc, Boivin, and Rochette West parent magmas, which may have undergone more extensive fractional crystallization, since these intrusions contain pyroxenes that are more iron rich and have lower Mg numbers than pyroxenes in the other PMD intrusions. The PMD mafic and ultramafic intrusions were intruded into an island arc located offshore from the Laurentian continent. Thus, their presence confirms the existence of a well-developed magmatic network (responsible of the fractionation processes) beneath the Proterozoic arc, which resulted in the wide range of compositions observed in the various plutons.