963 resultados para CD4 and CD8 cells
Resumo:
Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.
Resumo:
BACKGROUND: Occupational diisocyanate-induced extrinsic allergic alveolitis (EAA) is a rare and probably underestimated diagnosis. Two acute occupational EAA cases have been described in this context, but neither of them concerned hexamethylene diisocyanate (HDI) exposure. AIMS: To investigate the cause of a life-threatening EAA arising at work in a healthy 30-year-old female paint quality controller. METHODS: Occupational medical assessment, workplace evaluation, airborne and biological monitoring and immunodermatological tests. RESULTS: Diagnosis of EAA relied on congruent clinical and radiological information, confirmed occupational HDI exposure and positive IgG antibodies and patch tests. The patient worked in a small laboratory for 7 years, only occasionally using HDI-containing hardeners. While working with HDI for 6 h, she developed breathlessness, rapidly progressing to severe respiratory failure. Workplace HDI airborne exposure values ranged from undetectable levels to 4.25 p.p.b. Biological monitoring of urinary hexamethylene diamine in co-workers ranged from <1.0 to 15.4 μg/g creatinine. Patch tests 8 months later showed delayed skin reaction to HDI at 48 h. Subsequent skin biopsy showed spongiotic dermatitis with infiltration of CD4(+) and CD8(+) T cells. CONCLUSIONS: We believe this is the first reported case of acute life-threatening EAA following exposure to HDI. Low concentrations of airborne HDI and relatively high urinary hexamethylene diamine suggest significant skin absorption of HDI could have significantly contributed to the development of this acute occupational EAA.
Resumo:
Thymocytes and class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes express predominantly heterodimeric alpha/beta CD8. By interacting with non-polymorphic regions of MHC class I molecules CD8 can mediate adhesion or by binding the same MHC molecules that interact with the T-cell antigen receptor (TCR) function as coreceptor in TCR-ligand binding and T-cell activation. Using TCR photoaffinity labelling with a soluble, monomeric photoreactive H-2Kd-peptide derivative complex, we report here that the avidity of TCR-ligand interactions on cloned cytotoxic T cells is very greatly strengthened by CD8. This is primarily explained by coordinate binding of ligand molecules by CD8 and TCR, because substitution of Asp 227 of Kd with Lys severely impaired the TCR-ligand binding on CD8+, but not CD8- cells. Kinetic studies on CD8+ and CD8- cells further showed that CD8 imposes distinct dynamics and a remarkable temperature dependence on TCR-ligand interactions. We propose that the ability of CD8 to act as coreceptor can be modulated by CD8-TCR interactions.
Resumo:
Using reaggregating rat brain cell cultures at two different stages of differentiation, we examined the biochemical effects of a 10-day treatment with nanomolar concentrations of methylmercuric chloride (monomethylmercury), in the presence or absence of promoters of hydroxyl radical formation (10 microM copper sulphate plus 100 microM ascorbate). A decrease in total protein content accounted for the general cytotoxicity of these compounds, whereas selective effects were assessed by determining the activities of cell type-specific enzymes. Methylmercury, up to 100 nM, as well as the copper ascorbate mixture, when applied separately, induced no general cytotoxicity, and only slight effects on neuronal parameters. However, when applying 100 nM methylmercury and the copper-ascorbate mixture together, a drastic decrease in neuronal and glial parameters was found. Under these conditions, the content of reactive oxygen species, assessed by 2',7'-dichlorofluorescin oxidation, increased greatly, while the activities of antioxidant enzymes decreased. In the presence of copper and ascorbate, differentiated cultures appeared more resistant than immature ones to low methylmercury concentrations (1-10 mM), but did undergo similar changes in both cell type-specific and antioxidant enzyme activities at 100 nM methylmercury. These results suggest that in prooxidant conditions low doses of mercury can become much more deleterious for the central nervous system.
Resumo:
Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.
Resumo:
Background: Stem cells and their niches are studied in many systems, but mammalian germ stem cells (GSC) and their niches are still poorly understood. In rat testis, spermatogonia and undifferentiated Sertoli cells proliferate before puberty, but at puberty most spermatogonia enter spermatogenesis, and Sertoli cells differentiate to support this program. Thus, pre-pubertal spermatogonia might possess GSC potential and pre-pubertal Sertoli cells niche functions. We hypothesized that the different stem cell pools at pre-puberty and maturity provide a model for the identification of stem cell and niche-specific genes. We compared the transcript profiles of spermatogonia and Sertoli cells from pre-pubertal and pubertal rats and examined how these related to genes expressed in testicular cancers, which might originate from inappropriate communication between GSCs and Sertoli cells. Results: The pre-pubertal spermatogonia-specific gene set comprised known stem cell and spermatogonial stem cell (SSC) markers. Similarly, the pre-pubertal Sertoli cell-specific gene set comprised known niche gene transcripts. A large fraction of these specifically enriched transcripts encoded trans-membrane, extra-cellular, and secreted proteins highlighting stem cell to niche communication. Comparing selective gene sets established in this study with published gene expression data of testicular cancers and their stroma, we identified sets expressed genes shared between testicular tumors and pre-pubertal spermatogonia, and tumor stroma and pre-pubertal Sertoli cells with statistic significance. Conclusions: Our data suggest that SSC and their niche specifically express complementary factors for cell communication and that the same factors might be implicated in the communication between tumor cells and their micro-enviroment in testicular cancer.
Resumo:
Mycobacterium tuberculosis (Mtb) infection is known to have two main outcomes: latent infection (LTBI) where the pathogen is in a dormant form or active tuberculosis disease (TB), which is, most of the time, highly transmissible. Over one-third of the world's population asymptomatically harbours a latent form of Mtb with a 10% risk of disease reactivation. Efficient vaccine strategies remain unknown and the existing BCG vaccine is believed to protect against only some forms of TB (extra-pulmonary TB in children). Moreover, timely identification of TB remains complex with the actual diagnosis based on clinical observations associated to low efficient tests. Furthermore, current therapies are expensive, heavy and long for patients, and present lesser and lesser efficiency against new drug-resistant strains of Mtb. It is thus important to develop our knowledge on host -Mtb relationship to propose new vaccines, diagnosis tools and medications for the future. This thesis aims at improving our understanding of human immunology in the field of TB. All along this work, the same algorithm has been used and points towards the discovery of new correlates of protection through the comparison of T-cell immune responses in patients with LTBI or TB. We performed a comprehensive analysis of T-cell immune responses to Mtb using polychromatic flow cytometiy to study the functional profile of Μ/ό-specific CD4 Τ cells. We observed a polyfunctional profile in LTBI where CD4 Τ cells mainly co-produced IFN-γ, TNF-α and IL-2. In contrast, in TB, Mtó-specific CD4 Τ cells were mostly single TNF-a positive. Thus, analysis of the cytokine profiles was a strong immunological measure discriminating TB and LTBI. We next analyzed Thl7 cells. Mtò-specific Thl7 cells lacked immediate {i.e. ex vivo) IL-17A effector function in both LTBI and TB individuals. Moreover, they were also absent in bronchoalveolar lavages (BALs). Interestingly, we noticed that Mtb- specific Thl7 cells from LTBI but not from TB subjects acquired the ability to produce IL- 17A following Mtb-specific T-cell expansion. We finally performed a comprehensive characterization of Mfè-specific CD8 Τ cells that were detected in most (60%) TB patients and few (15%) LTBI subjects. We observed differences in the phenotype, the cytotoxicity and the proliferative capacities but not in the cytokine profile of Mtò-specific CD8 Τ cells between LTBI and TB. We concluded that the activity of Mtb infection (i.e. latent versus active) and the clinical presentation were associated to distinct profiles of Mtó-specific CD8 T-cell responses. To conclude, a multiparametric analysis including both CD4 and CD8 T-cell responses to Mtb lead to the development of a significantly improved diagnostic test discriminating between LTBI and TB. All together, these results provide new insights into the interaction between Mtb and the host immune response and expand upon our prior knowledge of tuberculosis. - L'infection par Mycobacterium tuberculosis peut résulter en une infection tuberculeuse latente et asymptomatique ou encore en une forme active et la plupart du temps contagieuse, la tuberculose. Un tiers de la population mondiale serait infectée de manière chronique avec 10 % de risques de développer la maladie durant la vie. Il n'existe actuellement aucun vaccin efficace, le BCG ne conférant qu'une protection partielle contre certaines formes extrapulmonaires de la maladie chez l'enfant. D'autre part, il n'existe pas de méthode diagnostique fiable et rapide, celle-ci se basant dans un premier temps sur l'analyse de la situation clinique des patients. Enfin, les thérapies actuelles sont couteuses et contraignantes pour les patients et tendent à ne plus être efficaces contre les souches émergentes de mycobactérie multi-résistantes. Aussi, il est important de bien comprendre la relation hôte-pathogène de manière à pouvoir proposer de nouveaux outils vaccinaux, diagnostiques et thérapeutiques. Ce manuscrit s'inscrit dans cette direction et vise à améliorer nos connaissances de la réponse immunitaire humaine dans le cadre de la tuberculose. Nous avons suivi un algorithme similaire tout au long des études proposées en comparant les réponses immunes des patients latents à celles des patients actifs, et ce, dans le but de mettre en évidence de potentiels corrélats de protection. Nous avons réalisé par cytométrie en flux une analyse du profil fonctionnel des cellules lymphocytaires CD4 dans la réponse au pathogène. Dans le cas de la tuberculose active, les cellules CD4 sécrètent majoritairement du TNF-α quand, au contraire, elles sécrètent à la fois du TNF-α, de l'IFN-γ et de l'IL-2 (poly-fonctionnalité) dans l'infection latente. Cette observation nous a permis de proposer un nouveau test diagnostique de la maladie active. Nous avons aussi étudié les cellules CD4 Thl7, impliquées dans la réponse immunitaire cellulaire contre les pathogènes extracellulaires et les champignons. Nous avons souligné une variation dans la production d'IL-17 entre infection latente et tuberculose active qui pourrait être impliquée dans la protection de l'individu contre le pathogène. D'autre part, ce manuscrit propose une caractérisation des cellules Τ CD8 dites cytotoxiques dans la tuberculose. Des divergences dans la fréquence des réponses observées, le phénotype mais aussi les capacités prolifératives et cytotoxiques ont pu être mises en évidence entre latence et tuberculose active. Ces observations soulignent le rôle important de ce groupe cellulaire dans l'évolution de la maladie et permettent de proposer une amélioration de l'outil diagnostic précédemment proposé et se basant à la fois sur le profil fonctionnel des cellules Τ CD4 ainsi que sur la présence potentielle d'une réponse CD8 spécifique au pathogène. Ces diverses études réalisées sur les cellules Τ humaines répondant spécifiquement à Mtb nous permettent de faire un pas supplémentaire dans la compréhension de notre réponse immunitaire face à ce pathogène particulièrement dangereux qui continue à l'heure actuelle à tuer chaque année des millions de personnes. - La tuberculose (TB) résulte d'une infection bactérienne par Mycobacterium tuberculosis (Mtb) et existe sous deux formes majeures: une forme latente, lorsque la bactérie est en phase de dormance ainsi qu'une forme active durant laquelle la bactérie se divise activement, entraînant les symptômes de la maladie. La personne infectée devient alors contagieuse dans la plupart des cas. Aujourd'hui des études épidémiologiques assument que plus d'un tiers de la population mondiale serait infectée par la forme latente de la bactérie et que 10% des cas réactiveront donnant lieu à diverses présentations de la maladie. Il n'existe actuellement aucun vaccin réellement efficace chez l'adulte. D'autre part, les traitements antibiotiques utilisés sont très lourds pour les patients et les cliniciens doivent faire face à l'émergence de nouvelles souches bactériennes multi-résistantes non affectées par les thérapies existantes. Les autorités sanitaires sont, d'autre part, confrontées à l'absence d'un outil diagnostique rapide, fiable et efficace. En effet, la méthode de référence reste la culture microbiologique du pathogène qui prend généralement plusieurs semaines, pendant lesquelles le patient pourra contaminer d'autres personnes. En résumé, la lutte contre la tuberculose doit passer par l'élaboration d'un vaccin efficace, de nouvelles thérapies, mais aussi par la mise en place de nouveaux tests diagnostics plus rapides afin d'éviter la dissémination de la maladie. Aussi, la relation hôte-bactérie qui n'est actuellement que peu comprise doit être investiguée. Ce travail de thèse a pour but d'étudier la réponse immunitaire chez l'homme infecté par Mtb et vise plus particulièrement l'étude d'une population clé de cellules immunitaires: les lymphocytes T. L'étude des cellules Τ CD4 nous a permis dans un premier temps de proposer un nouveau test diagnostic de la maladie active. Nous avons aussi analysé plus en détail une population spécifique des cellules Τ CD4 (les cellules Thl7), nous permettant d'associer leur fonction avec un possible état physiologique de protection contre le pathogène. En second lieu nous avons réalisé une caractérisation des cellules Τ CD8, à la fois chez les personnes avec des infections latentes et chez les personnes malades. Nous avons mis en évidence des différences fonctionnelles chez les deux groupes de patients, nous permettant ainsi une meilleure compréhension de l'immunité contre Mtb. Enfin, nous avons combiné les différents profils immunologiques obtenus pour développer un test diagnostic plus performant et sensible que celui proposé antérieurement. Ces diverses études réalisées sur les cellules Τ humaines nous permettent de faire un pas supplémentaire dans la compréhension de la réponse immunitaire face à ce pathogène particulièrement dangereux qui continue à tuer chaque année des millions de personnes.
Resumo:
For tissue engineering, several cell types and tissues have been proposed as starting material. Allogenic skin products available for therapeutic usage are mostly developed with cell culture and with foreskin tissue of young individuals. Fetal skin cells offer a valuable solution for effective and safe tissue engineering for wounds due to their rapid growth and simple cell culture. By selecting families of genes that have been reported to be implicated in wound repair and particularly for scarless fetal wound healing including transforming growth factor-beta (TGF-beta) superfamily, extracellular matrix, and nerve/angiogenesis growth factors, we have analyzed differences in their expression between fetal skin and foreskin cells, and the same passages. Of the five TGF-beta superfamily genes analyzed by real-time reverse transcription-polymerase chain reaction, three were found to be significantly different with sixfold up-regulated for TGF-beta2, and 3.8-fold for BMP-6 in fetal cells, whereas GDF-10 was 11.8-fold down-regulated. For nerve growth factors, midkine was 36-fold down-regulated in fetal cells, and pleiotrophin was 4.76-fold up-regulated. We propose that fetal cells present technical and therapeutic advantages compared to foreskin cells for effective cell-based therapy for wound management, and overall differences in gene expression could contribute to the degree of efficiency seen in clinical use with these cells.
Resumo:
Virgin T cells being primed to Th2-inducing or Th1-inducing Ags, respectively, start to synthesize IL-4 or IFN-gamma as they begin to proliferate. Parallel respective induction of B cells to produce gamma1 or gamma2a switch transcripts provides additional evidence of early divergent Th activity. This report concerns the roles of IL-4, IL-13, and B cells in these early events in vivo. Th2 responses were induced in lymph nodes against hapten-protein given s.c. with killed Bordetella pertussis adjuvant. In T cell proliferation in wild-type mice, IL-4 message up-regulation and gamma1 and epsilon switch transcript production were underway 48-72 h after immunization. The absence of IL-4, IL-13, or B cells did not alter the early T cell proliferative response. The gamma1 and epsilon switch transcript production was still induced in the absence of IL-4, IL-13, or both, but at a reduced level, while the dominance of switching to IgG1 in the extrafollicular hapten-specific plasma cell response was retained. The up-regulation of IL-4 message was not reduced or delayed in the absence of B cells and was only marginally reduced by the absence of IL-13. It is concluded that signals delivered by dendritic cells, which are not dependent on the presence of IL-4, IL-13, or B cells, can prime virgin T cells and induce the early Th2 activities studied. These early events that direct virgin T cells toward Th2 differentiation contrast with the critical later role of Th2 cytokines in selectively expanding Th2 clones and driving further IL-4 synthesis.
Resumo:
Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs) that are involved in the detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV) encodes A46 protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C) improves immune responses against HIV-1 antigens. This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the vaccine candidate NYVAC-C (NYVAC-C-ΔA46R). The viral gene A46R is not required for virus replication in primary chicken embryo fibroblast (CEF) cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the improvement of poxvirus-based vaccine candidates.
Resumo:
Long-term effects of trimethyltin (TMT) applied at concentrations below the cytotoxic level were examined in three-dimensional cell cultures of fetal rat telencephalon using biochemical, immunochemical and morphological criteria. It was found that in immature cultures low concentrations of TMT (10(-8) M) specifically induced a gliotic response in astrocytes, with increased immunoreactivity for glial fibrillary acidic protein, and a greater number of astrocytic processes. Significant changes in oligodendrocytic and neuronal parameters were found only at 10(-6) M of TMT. In differentiated cultures, distinct changes in cell type-specific parameters occurred at 10(-6) M of TMT (the lowest effective concentration). In addition, different patterns of responses were found for astrocytes and oligodendrocytes, as compared to immature cultures. These results suggest that among neural cells, astroblasts are most sensitive to TMT, and that the glial responses to this neurotoxicant are development-dependent.
Resumo:
A straightforward methodology for the synthesis of conjugates between a cytotoxic organometallic ruthenium(II) complex and amino- and guanidinoglycosides, as potential RNA-targeted anticancer compounds, is described. Under microwave irradiation, the imidazole ligand incorporated on the aminoglycoside moiety (neamine or neomycin) was found to replace one triphenylphosphine ligand from the ruthenium precursor [(η6-p-cym)RuCl(PPh3)2]+, allowing the assembly of the target conjugates. The guanidinylated analogue was easily prepared from the neomycin-ruthenium conjugate by reaction with N,N′-di-Boc-N″-triflylguanidine, a powerful guanidinylating reagent that was compatible with the integrity of the metal complex. All conjugates were purified by semipreparative high-performance liquid chromatography (HPLC) and characterized by electrospray ionization (ESI) and matrix-assisted laser desorptionionization time-of-flight (MALDI-TOF) mass spectrometry (MS) and NMR spectroscopy. The cytotoxicity of the compounds was tested in MCF-7 (breast) and DU-145 (prostate) human cancer cells, as well as in the normal HEK293 (Human Embryonic Kidney) cell line, revealing a dependence on the nature of the glycoside moiety and the type of cell (cancer or healthy). Indeed, the neomycinruthenium conjugate (2) displayed moderate antiproliferative activity in both cancer cell lines (IC50 ≈ 80 μM), whereas the neamine conjugate (4) was inactive (IC50 ≈ 200 μM). However, the guanidinylated analogue of the neomycinruthenium conjugate (3) required much lower concentrations than the parent conjugate for equal effect (IC50 = 7.17 μM in DU-145 and IC50 = 11.33 μM in MCF-7). Although the same ranking in antiproliferative activity was found in the nontumorigenic cell line (3 2 > 4), IC50 values indicate that aminoglycoside-containing conjugates are about 2-fold more cytotoxic in normal cells (e.g., IC50 = 49.4 μM for 2) than in cancer cells, whereas an opposite tendency was found with the guanidinylated conjugate, since its cytotoxicity in the normal cell line (IC50 = 12.75 μM for 3) was similar or even lower than that found in MCF-7 and DU-145 cancer cell lines, respectively. Cell uptake studies performed by ICP-MS with conjugates 2 and 3 revealed that guanidinylation of the neomycin moiety had a positive effect on accumulation (about 3-fold higher in DU-145 and 4-fold higher in HEK293), which correlates well with the higher antiproliferative activity of 3. Interestingly, despite the slightly higher accumulation in the normal cell than in the cancer cell line (about 1.4-fold), guanidinoneomycinruthenium conjugate (3) was more cytotoxic to cancer cells (about 1.8-fold), whereas the opposite tendency applied for neomycinruthenium conjugate (2). Such differences in cytotoxic activity and cellular accumulation between cancer and normal cells open the way to the creation of more selective, less toxic anticancer metallodrugs by conjugating cytotoxic metal-based complexes such as ruthenium(II) arene derivatives to guanidinoglycosides.
Resumo:
Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01(+) female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8(+) T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4(+) and CD8(+) T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4(+) T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.
Resumo:
Wood dust is recognised as a human carcinogen, based on the strong association of wood dust exposure and the elevated risk of malignant tumours of the nasal cavity and paranasal sinuses [sino-nasal cancer (SNC)]. The study aimed to assess genetic damage in workers exposed to wood dust using biomarkers in both buccal and nasal cells that reflect genome instability events, cellular proliferation and cell death frequencies. Nasal and buccal epithelial cells were collected from 31 parquet layers, installers, carpenters and furniture workers (exposed group) and 19 non-exposed workers located in Switzerland. Micronucleus (MN) frequencies were scored in nasal and buccal cells collected among woodworkers. Other nuclear anomalies in buccal cells were measured through the use of the buccal micronucleus cytome assay. MN frequencies in nasal and buccal cells were significantly higher in the exposed group compared to the non-exposed group; odds ratio for nasal cells 3.1 [95% confidence interval (CI) 1.8-5.1] and buccal cells 1.8 (95% CI 1.3-2.4). The exposed group had higher frequencies of cells with nuclear buds, karyorrhectic, pyknotic, karyolytic cells and a decrease in the frequency of basal, binucleated and condensed cells compared to the non-exposed group. Our study confirms that woodworkers have an elevated risk for chromosomal instability in cells of the aerodigestive tract. The MN assay in nasal cells may become a relevant biomonitoring tool in the future for early detection of SNC risk. Future studies should seek to standardise the protocol for MN frequency in nasal cells similar to that for MN in buccal cells.