790 resultados para CANCER CURRENT STATUS
Resumo:
There is an increasing demand for fish in the world due to a growing population, better economic situation in some sectors, and greater awareness of health issues in relation to food. Since capture fisheries have stagnated, fish farming has become a very fast growing food production system. In this presentation, the author gives an overview of the technologies that are available for genetic improvement of fish, and briefly discuss their merit in the context of a sustainable development. He also discusses the essential prerequisites for effective dissemination of improved stock to farmers. It is concluded that genetic improvement programs based on selective breeding can substantially contribute to sustainable fish production systems. Furthermore, if such genetic improvement programs are followed up with effective dissemination strategies, they can result in a positive impact on farmers' incomes.
Resumo:
Some relevant components of selection program theory and implementation are reviewed. This includes pedigree recording, genetic evaluation, balancing genetic gains and genetic diversity and tactical integration of key issues. Lessons learned are briefly described – illustrating how existing method and tools can be useful when launching a program in a novel species, and yet highlighting the importance of proper understanding and custom application according to the biology and environments of that species.
Resumo:
The use of reproductive and genetic technologies can increase the efficiency of selective breeding programs for aquaculture species. Four technologies are considered, namely: marker-assisted selection, DNA fingerprinting, in-vitro fertilization, and cryopreservation. Marker-assisted selection can result in greater genetic gain, particularly for traits difficult or expensive to measure, than conventional selection methods, but its application is currently limited by lack of high density linkage maps and by the high cost of genotyping. DNA fingerprinting is most useful for genetic tagging and parentage verification. Both in-vitro fertilization and cryopreservation techniques can increase the accuracy of selection while controlling accumulation of inbreeding in long-term selection programs. Currently, the cost associated with the utilization of reproductive and genetic techniques is possibly the most important factor limiting their use in genetic improvement programs for aquatic species.
Resumo:
An early establishment of selective breeding programs on Atlantic salmon has been crucial for the success of developing efficient and sustainable salmon farming in Norway. A national selective breeding program was initiated by AKVAFORSK at the beginning of the 1970s, by collecting fertilized eggs from more than 40 Norwegian river populations. Several private selective breeding programs were also initiated in the 1970s and 1980s. While these private programs were initiated using individual selection (i.e. massselection) to genetically improve growth, the national program was designed to gradually include all economically important traits in the breeding objective (i.e. growth, age at sexual maturation, disease resistance and quality traits) using a combined family and within-family selection strategy. Independent of which selection strategy and program design used, it is important to secure and maintain a broad genetic variation in the breeding populations to maximize selection response. It has been documented that genetically improved salmon from the national selective breeding program grow twice as fast as wild Atlantic salmon and require 25 per cent less feed, while salmon representing the private breeding programs all show an intermediate growth performance. As a result of efficient dissemination of genetically improved Atlantic salmon, the Norwegian salmon farming industry has reduced its feed costs by more than US$ 230 million per year! The national selective breeding program on Atlantic salmon was commercialized into a breeding company (AquaGen) in 1992. Five years later, several private companies and the AKVAFORSK Genetics Center (AFGC) established a second breeding company (SalmoBreed) using breeding candidates from one of the private breeding programs. These two breeding companies have similar products, but different strategies on how to organize the breeding program and to disseminate the genetically improved seed to the Norwegian salmon industry. Greater competition has increased the necessity to document the genetic gain obtained from the different programs and to market the economic benefits of farming the genetically improved breeds. Both breeding companies have organized their dissemination to get a sufficient share of the economic benefits in order to sustain and improve their breeding programs.
Resumo:
Common carp is one of the most important cultured freshwater fish species in the world. Its production in freshwater areas is the second largest in Europe after rainbow trout. Common carp production in Europe was 146,845 t in 2004 (FAO Fishstat Plus 2006). Common carp production is concentrated mainly in Central and Eastern Europe. In Hungary, common carp has been traditionally cultured in earthen ponds since the late 19th century, following the sharp drop in catches from natural waters, due to the regulation of main river systems. Different production technologies and unintentional selection methods resulted in a wide variety of this species. Just before the intensification of rearing technology and the exchange of stocking materials among fish farms (early sixties), “landraces” of carp were collected from practically all Hungarian fish farms into a live gene bank at the Research Institute for Fisheries, Aquaculture and Irrigation (HAKI) at Szarvas (Bakos and Gorda 1995; Bakos and Gorda 2001). In order to provide highly productive hybrids for production purposes starting from 1964, different strains and crosses between Hungarian landraces were created and tested. During the last 40 years, approximately 150 two-, three-, and four-line hybrids were produced. While developing parental lines, methods of individual selection, inbreeding, backcrossing of lines, gynogenesis and sex reversal were used. This breeding program resulted in three outstanding hybrids: “Szarvas 215 mirror” and “Szarvas P31 scaly” for pond production, and “Szarvas P34 scaly” for angling waters. Besides satisfying the needs of industry, the live gene bank helped to conserve the biological diversity of Hungarian carp landraces. Fifteen Hungarian carp landraces are still maintained today in the gene bank. Through exchange programs fifteen foreign carp strains were added to the collection from Central and Eastern Europe, as well as Southeast Asia (Bakos and Gorda 2001). Besides developing the methodology to maintain live specimens in the gene bank, the National Carp Breeding Program has been initiated in cooperation with all the key stakeholders in Hungary, namely the National Association of Fish Producers (HOSZ), the National Institute for Agricultural Quality Control (OMMI), and the Research Institute for Fisheries, Aquaculture and Irrigation (HAKI). In addition, methodologies or technologies for broodstock management and carp performance testing have been developed. This National Carp Breeding Program is being implemented successfully since the mid-1990s.
Resumo:
For the first time in India, selective breeding work has been initiated at the Central Institute of Freshwater Aquaculture, Bhubaneswar, India in collaboration with the Institute of Aquaculture Research (AKVAFORSK), Norway. Rohu has been chosen as the model species because it enjoys the highest consumer preference among Indian major carps (IMC) although its performance was observed to be slower than other IMC. As this was the first ever selection work on any Indian major carp, many procedures and techniques for successful implementation of the programs were standardized (i.e. production of full-sib groups, establishment of model hatchery for selective breeding of carps, rearing of full-sib groups in partitioned nursery ponds, individual tagging with the Passive Integrated Transponder (PIT) tag, communal rearing, sampling, data analysis, field testing and dissemination of improved rohu). After four generations of selection, an average of 17 per cent higher growth per generation was observed in improved rohu.
Resumo:
Since 1991, the certification, release and maintenance of new species for aquaculture have become part of the national policy in China. During the past 15 years, this policy has been conducted and improved and has begun to show its significant role in Chinese fisheries. This paper describes the updated system of certification, release and maintenance of new species for aquaculture in China.
Resumo:
Many sources of information that discuss currents problems of food security point to the importance of farmed fish as an ideal food source that can be grown by poor farmers, (Asian Development Bank 2004). Furthermore, the development of improved strains of fish suitable for low-input aquaculture such as Tilapia, has demonstrated the feasibility of an approach that combines “cutting edge science” with accessible technology, as a means for improving the nutrition and livelihoods of both the urban poor and poor farmers in developing countries (Mair et al. 2002). However, the use of improved strains of fish as a means of reducing hunger and improving livelihoods has proved to be difficult to sustain, especially as a public good, when external (development) funding sources devoted to this area are minimal1. In addition, the more complicated problem of delivery of an aquaculture system, not just improved fish strains and the technology, can present difficulties and may go explicitly unrecognized (from Sissel Rogne, as cited by Silje Rem 2002). Thus, the involvement of private partners has featured prominently in the strategy for transferring to the public technology related to improved Tilapia strains. Partnering with the private sector in delivery schemes to the poor should take into account both the public goods aspect and the requirement that the traits selected for breeding “improved” strains meet the actual needs of the resource poor farmer. Other dissemination approaches involving the public sector may require a large investment in capacity building. However, the use of public sector institutions as delivery agents encourages the maintaining of the “public good” nature of the products.
Resumo:
The 2008 Inter-Sessional Science Board Meeting (pp.1-2, pdf, 0.1 Mb) FUTURE – From Science Plan to Implementation Plan (pp. 3-4, pdf, 0.1 Mb) CFAME Task Team Workshop – Linking and Visualising (p. 5, pdf, 0.1 Mb) PICES WG 21 Meets in Busan, Korea: The Database Meeting (pp. 6-7, pdf, 0.1 Mb) ICES-PICES-IOC Symposium on Climate Change (pp. 8-12, pdf, 1.2 Mb) Zooplankton and Climate: Response Modes and Linkages (pp. 13-15, pdf, 0.2 Mb) PICES Fishery Science Committee Workshop in Gijón (pp. 16-18, pdf, 0.1 Mb) The North Pacific Continuous Plankton Recorder Survey (pp. 19-21, pdf, 0.4 Mb) PICES Ecosystem Status Report Wins Design Award (p. 21, pdf, 0.4 Mb) Canada’s Three Oceans (C3O): A Canadian Contribution to the International Polar Year (pp. 22-25, pdf, 0.8 Mb) New Surface Mooring at Station Papa Monitors Climate (pp. 26-27, pdf, 0.2 Mb) The State of the Western North Pacific in the Second Half of 2007 (pp. 28-29, pdf, 0.4 Mb) The Bering Sea: Current Status and Recent Events (pp. 30-31, pdf, 0.4 Mb) Recent Trends in Waters of the Subarctic NE Pacific (pp.32-33, pdf, 0.3 Mb) 2009 Vintage of Fraser River Sockeye Salmon: A Complex Full Bodied Redd with Mysterious Bouquet (p. 34, pdf, 0.1 Mb) Pacific Biological Station Celebrates Centennial Anniversary, 1908–2008 (p. 35, pdf, 0.3 Mb) Marine and Coastal Fisheries: American Fisheries Society Open Access E-journal (p. 36, pdf, 0.1 Mb) Latest and Upcoming PICES Publications (p. 36, pdf, 0.1 Mb)
Resumo:
Major Outcomes from the 2008 PICES Annual Meeting: A Note from the Chairman (pdf, 0.1 Mb) PICES Science – 2008 (pdf, 0.1 Mb) 2008 PICES Awards (pdf, 0.3 Mb) Charles B. Miller – A Selective Biography (pdf, 0.4 Mb) Latest and Upcoming PICES Publications (pdf, 0.1 Mb) 2008 OECOS Workshop in Dalian (pdf, 0.2 Mb) PICES Calendar (pdf, 0.1 Mb) 2008 PICES Workshop on “Climate Scenarios for Ecosystem Modeling (II)” (pdf, 0.1 Mb) PICES/ESSAS Workshop on “Marine Ecosystem Model Inter-Comparisons” (pdf, 0.2 Mb) Highlights of the PICES Seventeenth Annual Meeting (pdf, 0.5 Mb) 2008 PICES Summer School on “Ecosystem-Based Management” (pdf, 0.3 Mb) 4th PICES Workshop on “The Okhotsk Sea and Adjacent Areas” (pdf, 0.2 Mb) PICES WG 21 Rapid Assessment Surveys (pdf, 0.4 Mb) PICES Interns (pdf, 0.3 Mb) PICES @ Oceans in a High CO2 World (pdf, 0.1 Mb) Coping with Global Change in Marine Social–Ecological Systems: An International Symposium (pdf, 0.1 Mb) The State of the Western North Pacific in the First Half of 2008 (pdf, 1.3 Mb) State of the Northeast Pacific through 2008 (pdf, 0.3 Mb) The Bering Sea: Current Status and Recent Events (pdf, 0.2 Mb) An Opinion Born of Years of Observing Timeseries Observations (pdf, 0.1 Mb) New Chairman for the PICES Fishery Science Committee (pdf, 0.1 Mb)
Resumo:
Major Outcomes from the 2009 PICES Annual Meeting: A Note from the Chairman (pdf, 0.1 Mb) The FUTURE is Here (pdf, 0.1 Mb) PICES Harmful Algal Bloom International Seafood Safety Project (pdf, 0.3 Mb) PICES at the 2009 GLOBEC Open Science Meeting (pdf, 0.4 Mb) Modeling Ecosystems and Ocean Processes Workshop (pdf, 0.1 Mb) Krill Biology and Ecology Workshop (pdf, 0.1 Mb) Polar and Sub-Polar Marine Ecosystems Workshop (pdf, 0.4 Mb) Biogeochemistry of the Oceans in a Changing Climate Workshop (pdf, 0.1 Mb) Continuous Plankton Recorder Surveys of the Global Oceans (pdf, 0.4 Mb) Plankton Phenology Workshop (pdf, 0.2 Mb) Workshop on “Climate Impact on Ecosystem Dynamics of Marginal Seas” (pdf, 0.1 Mb) Erratum (pdf, 0.4 Mb) The State of the Western North Pacific in the Second Half of 2008 (pdf, 0.2 Mb) State of the Northeast Pacific into early 2009 (pdf, 0.1 Mb) Current Status of the Bering Sea Ecosystem (pdf, 0.1 Mb) 2009 Salmon Forecasting Forum (pdf, 0.3 Mb) The Third Argo Science Workshop: “The Future of Argo” (pdf, 0.1 Mb) 2009 ESSAS Annual Science Meeting (pdf, 0.1 Mb) A Visit Fit for an Emperor and Empress of Japan (pdf, 0.9 Mb)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Towed Vehicles: Undulating Platforms As Tools for Mapping Coastal Processes and Water Quality Assessment was convened February 5-7,2007 at The Embassy Suites Hotel, Seaside, California and sponsored by the ACT-Pacific Coast partnership at the Moss Landing Marine Laboratories (MLML). The TUV workshop was co-chaired by Richard Burt (Chelsea Technology Group) and Stewart Lamerdin (MLML Marine Operations). Invited participants were selected to provide a uniform representation of the academic researchers, private sector product developers, and existing and potential data product users from the resource management community to enable development of broad consensus opinions on the application of TUV platforms in coastal resource assessment and management. The workshop was organized to address recognized limitations of point-based monitoring programs, which, while providing valuable data, are incapable of describing the spatial heterogeneity and the extent of features distributed in the bulk solution. This is particularly true as surveys approach the coastal zone where tidal and estuarine influences result in spatially and temporally heterogeneous water masses and entrained biological components. Aerial or satellite based remote sensing can provide an assessment of the aerial extent of plumes and blooms, yet provide no information regarding the third dimension of these features. Towed vehicles offer a cost-effective solution to this problem by providing platforms, which can sample in the horizontal, vertical, and time-based domains. Towed undulating vehicles (henceforth TUVs) represent useful platforms for event-response characterization. This workshop reviewed the current status of towed vehicle technology focusing on limitations of depth, data telemetry, instrument power demands, and ship requirements in an attempt to identify means to incorporate such technology more routinely in monitoring and event-response programs. Specifically, the participants were charged to address the following: (1) Summarize the state of the art in TUV technologies; (2) Identify how TUV platforms are used and how they can assist coastal managers in fulfilling their regulatory and management responsibilities; (3) Identify barriers and challenges to the application of TUV technologies in management and research activities, and (4) Recommend a series of community actions to overcome identified barriers and challenges. A series of plenary presentation were provided to enhance subsequent breakout discussions by the participants. Dave Nelson (University of Rhode Island) provided extensive summaries and real-world assessment of the operational features of a variety of TUV platforms available in the UNOLs scientific fleet. Dr. Burke Hales (Oregon State University) described the modification of TUV to provide a novel sampling platform for high resolution mapping of chemical distributions in near real time. Dr. Sonia Batten (Sir Alister Hardy Foundation for Ocean Sciences) provided an overview on the deployment of specialized towed vehicles equipped with rugged continuous plankton recorders on ships of opportunity to obtain long-term, basin wide surveys of zooplankton community structure, enhancing our understanding of trends in secondary production in the upper ocean. [PDF contains 32 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) convened a workshop on Evaluating Approaches and Technologies for Monitoring Organic Contaminants in the Aquatic Environment in Ann Arbor, MI on July 21-23, 2006. The primary objectives of this workshop were to: 1) identify the priority management information needs relative to organic contaminant loading; 2) explore the most appropriate approaches to estimating mass loading; and 3) evaluate the current status of the sensor technology. To meet these objectives, a mixture of leading research scientists, resource managers, and industry representatives were brought together for a focused two-day workshop. The workshop featured four plenary talks followed by breakout sessions in which arranged groups of participants where charged to respond to a series of focused discussion questions. At present, there are major concerns about the inadequacies in approaches and technologies for quantifying mass emissions and detection of organic contaminants for protecting municipal water supplies and receiving waters. Managers use estimates of land-based contaminant loadings to rivers, lakes, and oceans to assess relative risk among various contaminant sources, determine compliance with regulatory standards, and define progress in source reduction. However, accurately quantifying contaminant loading remains a major challenge. Loading occurs over a range of hydrologic conditions, requiring measurement technologies that can accommodate a broad range of ambient conditions. In addition, in situ chemical sensors that provide a means for acquiring continuous concentration measurements are still under development, particularly for organic contaminants that typically occur at low concentrations. Better approaches and strategies for estimating contaminant loading, including evaluations of both sampling design and sensor technologies, need to be identified. The following general recommendations were made in an effort to advance future organic contaminant monitoring: 1. Improve the understanding of material balance in aquatic systems and the relationship between potential surrogate measures (e.g., DOC, chlorophyll, particle size distribution) and target constituents. 2. Develop continuous real-time sensors to be used by managers as screening measures and triggers for more intensive monitoring. 3. Pursue surrogate measures and indicators of organic pollutant contamination, such as CDOM, turbidity, or non-equilibrium partitioning. 4. Develop continuous field-deployable sensors for PCBs, PAHs, pyrethroids, and emerging contaminants of concern and develop strategies that couple sampling approaches with tools that incorporate sensor synergy (i.e., measure appropriate surrogates along with the dissolved organics to allow full mass emission estimation).[PDF contains 20 pages]
Resumo:
The Alliance for Coastal Technologies (ACT) Partner University of Michigan convened a workshop on the Applications of Drifting Buoy Technologies for Coastal Watershed and Ecosystem Modeling in Ann Arbor, Michigan on June 5 to 7,2005. The objectives of the workshop were to: (1) educate potential users (managers and scientists) about the current capabilities and uses of drifting buoy technologies; (2) provide an opportunity for users (managers and scientists) to experience first hand the deployment and retrieval of various drifting buoys, as well as experience the capabilities of the buoys' technologies; (3) engage manufacturers with scientists and managers in discussions on drifting buoys' capabilities and their requirements to promote further applications of these systems; (4) promote a dialogue about realistic advantages and limitations of current drifting buoy technologies; and (5) develop a set of key recommendations for advancing both the capabilities and uses of drifting buoy technologies for coastal watershed and ecosystem modeling. To achieve these goals, representatives from research, academia, industry, and resource management were invited to participate in this workshop. Attendees obtained "hands on" experience as they participated in the deployment and retrieval of various drifting buoy systems on Big Portage Lake, a 644 acre lake northwest of Ann Arbor. Working groups then convened for discussions on current commercial usages and environmental monitoring approaches including; user requirements for drifting buoys, current status of drifting buoy systems and enabling technologies, and the challenges and strategies for bringing new drifting buoys "on-line". The following general recommendations were made to: 1). organize a testing program of drifting buoys for marketing their capabilities to resource managers and users. 2). develop a fact sheet to highlight the utility of drifting buoys. 3). facilitate technology transfer for advancements in drifter buoys that may be occurring through military funding and development in order to enhance their technical capability for environmental applications. (pdf contains 18 pages)
Resumo:
The Alliance for Coastal Technologies (ACT) Workshop on Trace Metal Sensors for Coastal Monitoring was convened April 11-13, 2005 at the Embassy Suites in Seaside, California with partnership from Moss Landing Marine Laboratories (MLML) and the Monterey Bay Aquarium Research Institute (MBARI). Trace metals play many important roles in marine ecosystems. Due to their extreme toxicity, the effects of copper, cadmium and certain organo-metallinc compounds (such as tributyltin and methylmercury) have received much attention. Lately, the sublethal effects of metals on phytoplankton biochemistry, and in some cases the expression of neurotoxins (Domoic acid), have been shown to be important environmental forcing functions determining the composition and gene expression in some groups. More recently the role of iron in controlling phytoplankton growth has led to an understanding of trace metal limitation in coastal systems. Although metals play an important role at many different levels, few technologies exist to provide rapid assessment of metal concentrations or metal speciation in the coastal zone where metal-induced toxicity or potential stimulation of harmful algal blooms, can have major economic impacts. This workshop focused on the state of on-site and in situ trace element detection technologies, in terms of what is currently working well and what is needed to effectively inform coastal zone managers, as well as guide adaptive scientific sampling of the coastal zone. Specifically the goals of this workshop were to: 1) summarize current regional requirements and future targets for metal monitoring in freshwater, estuarine and coastal environments; 2) evaluate the current status of metal sensors and possibilities for leveraging emerging technologies for expanding detection limits and target elements; and 3) help identify critical steps needed for and limits to operational deployment of metal sensors as part of routine water quality monitoring efforts. Following a series of breakout group discussions and overview talks on metal monitoring regulatory issues, analytical techniques and market requirements, workshop participants made several recommendations for steps needed to foster development of in situ metal monitoring capacities: 1. Increase scientific and public awareness of metals of environmental and biological concern and their impacts in aquatic environments. Inform scientific and public communities regarding actual levels of trace metals in natural and perturbed systems. 2. Identify multiple use applications (e.g., industrial waste steam and drinking water quality monitoring) to support investments in metal sensor development. (pdf contains 27 pages)