436 resultados para CANALITH REPOSITIONING MANEUVER
Resumo:
Proximal humerus fractures (pHF) are common. In this retrospective study intra-operative and postoperative data and complications of patients stabilized with conventional semirigid techniques (pins, n=30; helix wire, n=19) or a novel semirigid technique, the intramedullary claw (IMC, n=82) were compared. The type and frequency of postoperative complications differed between the groups (p<0.001). The IMC is a novel semirigid technique to stabilize pHF and seems to result in fewer complications than pins or helix wire. The frequency and relevance of a loss of repositioning in patients after IMC implantation need to be elucidated in long-term studies.
Resumo:
The most common techniques to perform stellate ganglion blocks (SGBs) are the blind C6 approach and the fluoroscopic-controlled paratracheal C7 approach, both after manual dislocation of the large vessels. Complications due to vascular or esophageal puncture have been reported. The goal of this ultrasound imaging study was to determine how frequently hazardous structures are located along the needle path of conventional SGB and to determine the influence of the dislocation maneuver on their position.
Resumo:
The aim of this study was to test the hypothesis that ear oximetry immediately after the release of a sustained Valsalva maneuver accurately detects patent foramen ovale (PFO). One hundred sixty-five scuba divers underwent transesophageal echocardiography (TEE; reference method) for PFO assessment. Ear oximetry of the right earlobe was performed in a different room within a time frame of 2 hours before or after TEE. The subject and the oximetry operator were unaware of the results of TEE. Oxygen saturation (SO(2)) measurements were obtained at baseline and during the release phase of 4 Valsalva maneuvers within 10 minutes, and the average SO(2) change (SO(2) at baseline minus SO(2) at Valsalva release) was determined as the primary study end point. One hundred seventeen divers had no PFO, and 48 (29%) had PFO by TEE (mean age 39 ± 8 years). The average SO(2) change was 0.79 ± 1.13% (i.e., a slight absolute SO(2) decrease in response to the Valsalva maneuver) in the group without PFO and 1.67 ± 1.19% in the PFO group (p <0.0001). Using receiver-operating characteristic curve analysis, a PFO as defined by TEE could be detected at a threshold of a Valsalva-induced decrease in SO(2) of ≥0.825 percentage points in comparison to baseline (sensitivity 0.756, specificity 0.706, area under the receiver-operating characteristic curve 0.763, p <0.0001, negative predictive value 0.882). In conclusion, the entirely noninvasive method of ear oximetry in response to repetitive Valsalva maneuvers is accurate and useful as a screening method for the detection of a PFO, as shown in this study of divers.
Resumo:
The suspected cause of clinical manifestations of patent foramen ovale (PFO) is a transient or a permanent right-to-left shunt (RLS). Contrast-enhanced transcranial Doppler ultrasound (c-TCD) is a reliable alternative to transesophageal echocardiography (TEE) for diagnosis of PFO, and enables also the detection of extracardiac RLS. The air-containing echo contrast agents are injected intravenously and do not pass the pulmonary circulation. In the presence of RLS, the contrast agents bypass the pulmonary circulation and cause microembolic signals (MES) in the basal cerebral arteries, which are detected by TCD. The two main echo contrast agents in use are agitated saline and D-galactose microparticle solutions. At least one middle cerebral artery (MCA) is insonated, and the ultrasound probe is fixed with a headframe. The monitored Doppler spectra are stored for offline analysis (e.g., videotape) of the time of occurrence and number of MES, which are used to assess the size and functional relevance of the RLS. The examination is more sensitive, if both MCAs are investigated. In the case of negative testing, the examination is repeated using the Valsalva maneuver. Compared to TEE, c-TCD is more comfortable for the patient, enables an easier assessment of the size and functional relevance of the RLS, and allows also the detection of extracardiac RLS. However, c-TCD cannot localize the site of the RLS. Therefore, TEE and TCD are complementary methods and should be applied jointly in order to increase the diagnostic accuracy for detecting PFO and other types of RLS.
Resumo:
INTRODUCTION: The objective was to study the effects of a novel lung volume optimization procedure (LVOP) using high-frequency oscillatory ventilation (HFOV) upon gas exchange, the transpulmonary pressure (TPP), and hemodynamics in a porcine model of surfactant depletion. METHODS: With institutional review board approval, the hemodynamics, blood gas analysis, TPP, and pulmonary shunt fraction were obtained in six anesthetized pigs before and after saline lung lavage. Measurements were acquired during pressure-controlled ventilation (PCV) prior to and after lung damage, and during a LVOP with HFOV. The LVOP comprised a recruitment maneuver with a continuous distending pressure (CDP) of 45 mbar for 2.5 minutes, and a stepwise decrease of the CDP (5 mbar every 5 minute) from 45 to 20 mbar. The TPP level was identified during the decrease in CDP, which assured a change of the PaO2/FIO2 ratio < 25% compared with maximum lung recruitment at CDP of 45 mbar (CDP45). Data are presented as the median (25th-75th percentile); differences between measurements are determined by Friedman repeated-measures analysis on ranks and multiple comparisons (Tukey's test). The level of significance was set at P < 0.05. RESULTS: The PaO2/FiO2 ratio increased from 99.1 (56.2-128) Torr at PCV post-lavage to 621 (619.4-660.3) Torr at CDP45 (CDP45) (P < 0.031). The pulmonary shunt fraction decreased from 51.8% (49-55%) at PCV post-lavage to 1.03% (0.4-3%) at CDP45 (P < 0.05). The cardiac output and stroke volume decreased at CDP45 (P < 0.05) compared with PCV, whereas the heart rate, mean arterial pressure, and intrathoracic blood volume remained unchanged. A TPP of 25.5 (17-32) mbar was required to preserve a difference in PaO2/FIO2 ratio < 25% related to CDP45; this TPP was achieved at a CDP of 35 (25-40) mbar. CONCLUSION: This HFOV protocol is easy to perform, and allows a fast determination of an adequate TPP level that preserves oxygenation. Systemic hemodynamics, as a measure of safety, showed no relevant deterioration throughout the procedure.
Resumo:
This paper presents a novel technique to create a computerized fluoroscopy with zero-dose image updates for computer-assisted fluoroscopy-based close reduction and osteosynthesis of diaphyseal fracture of femurs. With the novel technique, repositioning of bone fragments during close fracture reduction will lead to image updates in each acquired imaging plane, which is equivalent to using several fluoroscopes simultaneously from different directions but without any X-ray radiation. Its application facilitates the whole fracture reduction and osteosynthesis procedure when combining with the existing leg length and antetorsion restoration methods and may result in great reduction of the X-ray radiation to the patient and to the surgical team. In this paper, we present the approach for achieving such a technique and the experimental results with plastic bones.
Resumo:
Many chronic human lung diseases have their origin in early childhood, yet most murine models used to study them utilize adult mice. An important component of the asthma phenotype is exaggerated airway responses, frequently modelled by methacholine (MCh) challenge. The present study was undertaken to characterize MCh responses in mice from 2 to 8 wk of age measuring absolute lung volume and volume-corrected respiratory mechanics as outcome variables. Female BALB/c mice aged 2, 3, 4, 6, and 8 wk were studied during cumulative intravenous MCh challenge. Following each MCh dose, absolute lung volume was measured plethysmographically at functional residual volume and during a slow inflation to 20-hPa transrespiratory pressure. Respiratory system impedance was measured continuously during the inflation maneuver and partitioned into airway and constant-phase parenchymal components by model fitting. Volume-corrected (specific) estimates of respiratory mechanics were calculated. Intravenous MCh challenge induced a predominantly airway response with no evidence of airway closure in any age group. No changes in functional residual volume were seen in mice of any age during the MCh challenge. The specific airway resistance MCh dose response curves did not show significant differences between the age groups. The results from the present study do not show systematic differences in MCh responsiveness in mice from 2 to 8 wk of age.
Resumo:
A new system for computer-aided corrective surgery of the jaws has been developed and introduced clinically. It combines three-dimensional (3-D) surgical planning with conventional dental occlusion planning. The developed software allows simulating the surgical correction on virtual 3-D models of the facial skeleton generated from computed tomography (CT) scans. Surgery planning and simulation include dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and segment repositioning. By coupling the software with a tracking system and with the help of a special registration procedure, we are able to acquire dental occlusion plans from plaster model mounts. Upon completion of the surgical plan, the setup is used to manufacture positioning splints for intraoperative guidance. The system provides further intraoperative assistance with the help of a display showing jaw positions and 3-D positioning guides updated in real time during the surgical procedure. The proposed approach offers the advantages of 3-D visualization and tracking technology without sacrificing long-proven cast-based techniques for dental occlusion evaluation. The system has been applied on one patient. Throughout this procedure, we have experienced improved assessment of pathology, increased precision, and augmented control.
Resumo:
Non-invasive documentation methods such as surface scanning and radiological imaging are gaining in importance in the forensic field. These three-dimensional technologies provide digital 3D data, which are processed and handled in the computer. However, the sense of touch gets lost using the virtual approach. The haptic device enables the use of the sense of touch to handle and feel digital 3D data. The multifunctional application of a haptic device for forensic approaches is evaluated and illustrated in three different cases: the representation of bone fractures of the lower extremities, by traffic accidents, in a non-invasive manner; the comparison of bone injuries with the presumed injury-inflicting instrument; and in a gunshot case, the identification of the gun by the muzzle imprint, and the reconstruction of the holding position of the gun. The 3D models of the bones are generated from the Computed Tomography (CT) images. The 3D models of the exterior injuries, the injury-inflicting tools and the bone injuries, where a higher resolution is necessary, are created by the optical surface scan. The haptic device is used in combination with the software FreeForm Modelling Plus for touching the surface of the 3D models to feel the minute injuries and the surface of tools, to reposition displaced bone parts and to compare an injury-causing instrument with an injury. The repositioning of 3D models in a reconstruction is easier, faster and more precisely executed by means of using the sense of touch and with the user-friendly movement in the 3D space. For representation purposes, the fracture lines of bones are coloured. This work demonstrates that the haptic device is a suitable and efficient application in forensic science. The haptic device offers a new way in the handling of digital data in the virtual 3D space.
Resumo:
INTRODUCTION: Little explanation is given to patients with temporomandibular disorders and muscles dysfunction on the mechanism and the expected results of conservative treatment. The purpose of this prospective study was to evaluate the efficacy of specific physical therapy prescribed after this explanation was given and also after using a flat occlusal splint adapted only if muscle pain remained after physical therapy. MATERIAL AND METHOD: Twenty-seven patients with temporomandibular joint dysfunction of muscular origin were evaluated after a mean of six sessions of specialized physical therapy with professionals. Patients were treated by oral and facial massages and were trained for self-reeducation. They were also trained for a specific exercise named the "propulsive/opening maneuver". Every patient was questioned on the subjective evolution of pain and the current maximal pain was evaluated with the Visual Analogical Scale (VAS). Clinical evaluation focused on tenderness of masticator muscles and also assessed the changes in the amplitude of mouth opening. RESULTS: Ninety-three percent of the patients treated by specific physical therapy had a significant reduction of their maximal pain feeling (p<0.05). The recovery of an optimal mouth opening without deviation was also improved as was the protrusion. For 33% of the patients a flat nighttime occlusal splint was necessary as a complementary treatment. Twenty-two percent of the patients decided to change their treatment for alternative therapies (osteopathy, acupuncture, etc.). Fifty percent of the patients were convinced of the efficacy of the prescribed treatment. DISCUSSION: Patients who undertake the specific physical therapy and who regularly practice self-physical therapy succeed in relaxing their masticator muscles and in decreasing the level of pain. Explanations given by the doctor concerning the etiology of pain, during temporomandibular joint dysfunction of muscular origin, and the purpose of specific physical therapy increase the capacity of self-relaxation. A flat occlusal splint is indicated for patients who grind their teeth and for those whose pain resists to physical therapy.
Resumo:
BACKGROUND: Patent foramen ovale (PFO) has been linked to migraine, and several retrospective studies reported an improvement in migraine prevalence or frequency after PFO closure for other reasons, mostly for secondary prevention of paradoxical embolism or following diving accidents. We investigated the outcome of patients undergoing PFO closure solely for migraine headaches refractory to medical treatment. METHODS: Seventeen patients (age 44 +/- 12 years; 76% female; one atrial septal aneurysm) underwent percutaneous PFO closure using the Amplatzer PFO Occluder (AGA Medical Corporation, Golden Valley, MN). An 18-mm device was used in two patients, a 25-mm device in 13, and a 35-mm device in two. The interventions were solely guided by fluoroscopy, without intraprocedural echocardiography. RESULTS: All implantation procedures were successful. There were no peri-procedural complications. Contrast transesophageal echocardiography after Valsalva maneuver at 6 months showed complete PFO closure in 16 patients (94%), whereas a minimal residual shunt persisted in one (6%). During 2.7 +/- 1.5 years of follow-up, no deaths and no embolic events occurred. After PFO closure, migraine headaches disappeared in four patients (24%), and improved in eight additional patients (47%). Three patients (18%) reported a decrease of their headaches by 75%, three patients (18%) a decrease of 50%, and two patients (12%) a decrease of 25%, while headaches remained unchanged in five patients (29%). No patient experienced worsening headaches. Moreover, the prevalence of migraine with aura decreased from 82 to 24% (P = 0.002). CONCLUSIONS: These results suggest that percutaneous PFO closure durably alters the spontaneous course of shunt associated migraine.
Resumo:
Early impaired cerebral blood flow (CBF) after severe head injury (SHI) leads to poor brain tissue oxygen delivery and lactate accumulation. The purpose of this investigation was to elucidate the relationship between CBF, local dialysate lactate (lact(md)) and dialysate glucose (gluc(md)), and brain tissue oxygen levels (PtiO2) under arterial normoxia. The effect of increased brain tissue oxygenation due to high fractions of inspired oxygen (FiO2) on lact(md) and CBF was explored. A total of 47 patients with SHI were enrolled in this studies (Glasgow Coma Score [GCS] < 8). CBF was first assessed in 40 patients at one time point in the first 96 hours (27 +/- 28 hours) after SHI using stable xenon computed tomography (Xe-CT) (30% inspired xenon [FiXe] and 35% FiO2). In a second study, sequential double CBF measurements were performed in 7 patients with 35% FiO2 and 60% FiO2, respectively, with an interval of 30 minutes. In a subsequent study, 14 patients underwent normobaric hyperoxia by increasing FiO2 from 35 +/- 5% to 60% and then 100% over a period of 6 hours. This was done to test the effect of normobaric hyperoxia on lact(md) and brain gluc(md), as measured by local microdialysis. Changes in PtiO2 in response to changes in FiO2 were analyzed by calculating the oxygen reactivity. Oxygen reactivity was then related to the 3-month outcome data. The levels of lact(md) and gluc(md) under hyperoxia were compared with the baseline levels, measured at 35% FiO2. Under normoxic conditions, there was a significant correlation between CBF and PtiO2 (R = 0.7; P < .001). In the sequential double CBF study, however, FiO2 was inversely correlated with CBF (P < .05). In the 14 patients undergoing the 6-hour 100% FiO2 challenge, the mean PtiO2 levels increased to 353 (87% compared with baseline), although the mean lact(md) levels decreased by 38 +/- 16% (P < .05). The PtiO2 response to 100% FiO2 (oxygen reactivity) was inversely correlated with outcome (P < .01). Monitoring PtiO2 after SHI provides valuable information about cerebral oxygenation and substrate delivery. Increasing arterial oxygen tension (PaO2) effectively increased PtiO2, and brain lact(md) was reduced by the same maneuver.
Resumo:
In mid-July 2003, the U.S. Army Tank-Automotive & Armaments Command (TACOM) performed a series of experiments at Keweenaw Research Center (KRC), with a remote operated mine roller system. This system, named Panther Lite, consists of two M113 Armored Personnel Carriers (APC’s) connected by a Tandem Vehicle Linkage Assembly (TVLA). The system has three sets of mine rollers, two of which are connected to the front of the lead vehicle with one set trailing from the trail vehicle. Currently, the system requires two joystick controllers. One regulates the braking of the tracks, throttle, and transmission of the lead vehicle and the other controls the braking and throttle of the rear vehicle. One operator controls both joysticks, attempting to maneuver the lead vehicle along a desired path. At the same time, this operator makes compensation maneuvers to reduce lateral loads in the TVLA and to guide the rear mine rollers along the desired path. The purpose of this project is to create algorithms that would allow the slave (trail) vehicle to operate using inputs that maneuver the control (lead) vehicle. The project will be completed by first reconstructing the experimental data. Kinematic models will be generated and simulations created. The models will then be correlated with the reconstructions of the experimental data. The successful completion of this project will be a first step to eliminating the need for the second joystick.
Resumo:
Three-dimensional (3D) ultrasound volume acquisition, analysis and display of fetal structures have enhanced their visualization and greatly improved the general understanding of their anatomy and pathology. The dynamic display of volume data generally depends on proprietary software, usually supplied with the ultrasound system, and on the operator's ability to maneuver the dataset digitally. We have used relatively simple tools and an established storage, display and manipulation format to generate non-linear virtual reality object movies of prenatal images (including moving sequences and 3D-rendered views) that can be navigated easily and interactively on any current computer. This approach permits a viewing or learning experience that is superior to watching a linear movie passively.
Posterolateral approach to the displaced posterior malleolus: functional outcome and local morbidity
Resumo:
BACKGROUND: Stable anatomical reconstruction of the joint surface in ankle fractures is essential to successful recovery. However, the functional outcome of fractures involving the posterior tibial plafond is often poor. We describe the morbidity and functional outcome for plate fixation of the displaced posterior malleolus using a posterolateral approach. MATERIALS AND METHODS: The posterolateral approach was used for osteosynthesis of the posterior malleolus in 45 consecutive patients (median age 54 years) with AO/Muller-classification type 44-A3 (n = 1), 44-B3 (n = 35), 44-C1 (n = 7), and 44-C2 (n = 2) ankle fractures. Thirty-three of the patients suffered complete fracture dislocation. Functional outcome at followup was measured using the modified Weber protocol and the standardized AAOS foot and ankle questionnaire. Radiological evaluation employed standardized anterior-posterior and lateral views. RESULTS: The fragment comprised a median of 24% (range, 10% to 48%) of the articular surface. Postoperative soft tissue problems were encountered in five patients (11%), one of whom required revision surgery. Two patients (4%) developed Stage I complex regional pain syndrome. Clinical and radiological followup at 25 months disclosed no secondary displacement of the fixed fragment. The median foot and ankle score was 93 (range, 58 to 100), shoe comfort score was 77 (range, 0 to 100). A median score of 7 (range, 5 to 16) was documented using the modified Weber protocol. CONCLUSION: The posterolateral approach allowed good exposure and stable fixation of a displaced posterior malleolar fragment with few local complications. The anatomical repositioning and stable fixation led to good functional and subjective outcome.