986 resultados para CALCIUM IONS RELEASE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The solutions commonly used to dilute or cryopreserve sperm are commonly composed of salts, buffers and cryoprotectants, which may affect gametes and subsequent fertilization success. Here, we have evaluated the effects of several cryoprotectants (methanol; MeOH, dimethyl sulfoxide; DMSO and dimethyl acetamide; DMA at concentrations of 0.25, 0.5 and 1%) and different ions (potassium, calcium and magnesium at concentrations of 1.25, 2.5, 5.0 and 10 mM) as sperm diluents upon sperm motility and fertilization success in the loach Misgurnus anguillicaudatus sperm. Our results demonstrated that DMSO (at 1%) decreased sperm motility while calcium and magnesium ions (from 2.5 mM) induced sperm aggregation and reduced sperm motility. Reduced fertilization rates were observed with potassium (from 1.25 mM), calcium (at 10 mM), magnesium (at 10 mM), DMA (at 1%), and DMSO (at 1%). We conclude that specific ions and cryoprotectants, and their relative concentrations caused effect upon loach gametes. These data are important to consider for the preparation of sperm diluents and activating solutions in order to manage gamete quality for artificial propagation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca2+. Recent crystal structures have been obtained for the protein in the apo-and Ca2+-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca2+ and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca2+ binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca2+ affinity as the wild-type protein. We then evaluated if Ca2+ binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca2+ ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The purpose of this study was to analyze the influence of ultrasonic activation of calcium hydroxide (CH) pastes on pH and calcium release in simulated external root resorptions. Methods: Forty-six bovine incisors had their canals cleaned and instrumented, and defects were created in the external middle third of the roots, which were then used for the study. The teeth were externally made impermeable, except for the defected area, and divided into the following 4 groups containing 10 samples each according to the CH paste and the use or not of the ultrasonic activation: group 1: propylene glycol without ultrasonic activation, group 2: distilled water without ultrasonic activation, group 3: propylene glycol with ultrasonic activation, and group 4: distilled water with ultrasonic activation. After filling the canals with the paste, the teeth were restored and individually immersed into flasks with ultrapure water. The samples were placed into other flasks after 7, 15, and 30 days so that the water pH level could be measured by means of a pH meter. Calcium release was measured by means of an atomic absorption spectrophotometer. Six teeth were used as controls. The results were statistically compared using the Kruskal-Wallis and Mann-Whitney U tests (P < .05). Results: For all periods analyzed, the pH level was found to be higher when the CH paste was activated with ultrasound. Calcium release was significantly greater (P < .05) using ultrasonic activation after 7 and 30 days. Conclusions: The ultrasonic activation of CH pastes favored a higher pH level and calcium release in simulated external root resorptions. (J Endod 2012;38:834-837)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemical disinfectants are usually associated with mechanical methods to remove stains and reduce biofilm formation. This study evaluated the effect of disinfectants on release of metal ions and surface roughness of commercially pure titanium, metal alloys, and heat-polymerized acrylic resin, simulating 180 immersion trials. Disk-shaped specimens were fabricated with commercially pure titanium (Tritan), nickel-chromium-molybdenum-titanium (Vi-Star), nickel-chromium (Fit Cast-SB Plus), and nickel-chromium-beryllium (Fit Cast-V) alloys. Each cast disk was invested in the flasks, incorporating the metal disk to the heat-polymerized acrylic resin. The specimens (n=5) were immersed in these solutions: sodium hypochlorite 0.05%, Periogard, Cepacol, Corega Tabs, Medical Interporous, and Polident. Deionized water was used as a control. The quantitative analysis of metal ion release was performed using inductively coupled plasma mass spectrometry (ELAN DRC II). A surface analyzer (Surftest SJ-201P) was used to measure the surface roughness (µm). Data were recorded before and after the immersions and evaluated by two-way ANOVA and Tukey's test (α=0.05). The nickel release proved most significant with the Vi-Star and Fit Cast-V alloys after immersion in Medical Interporous. There was a significant difference in surface roughness of the resin (p=0.011) after immersion. Cepacol caused significantly higher resin roughness. The immersion products had no influence on metal roughness (p=0.388). It could be concluded that the tested alloys can be considered safe for removable denture fabrication, but disinfectant solutions as Cepacol and Medical Interporous tablet for daily denture immersion should be used with caution because it caused greater resin surface roughness and greater ion release, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objects with complex shape and functions have always attracted attention and interest. The morphological diversity and complexity of naturally occurring forms and patterns have been a motivation for humans to copy and adopt ideas from Nature to achieve functional, aesthetic and social value. Biomimetics is addressed to the design and development of new synthetic materials using strategies adopted by living organisms to produce biological materials. In particular, biomineralized tissues are often sophisticate composite materials, in which the components and the interfaces between them have been defined and optimized, and that present unusual and optimal chemical-physical, morphological and mechanical properties. Moreover, biominerals are generally produced by easily traceable raw materials, in aqueous media and at room pressure and temperature, that is through cheap process and materials. Thus, it is not surprising that the idea to mimic those strategies proper of Nature has been employed in several areas of applied sciences, such as for the preparation of liquid crystals, ceramic thin films computer switches and many other advanced materials. On this basis, this PhD thesis is focused on the investigation of the interaction of biologically active ions and molecules with calcium phosphates with the aim to develop new materials for the substitution and repair of skeletal tissue, according to the following lines: I. Modified calcium phosphates. A relevant part of this PhD thesis has been addressed to study the interaction of Strontium with calcium phosphates. It was demonstrated that strontium ion can substitute for calcium into hydroxyapatite, causing appreciable structural and morphological modifications. The detailed structural analysis carried out on the nanocrystals at different strontium content provided new insight into its interaction with the structure of hydroxyapatite. At variance with the behaviour of Sr towards HA, it was found that this ion inhibits the synthesis of octacalcium phosphate. However, it can substitute for calcium in this structure up to 15 atom %, in agreement with the increase of the cell parameters observed on increasing ion concentration. A similar behaviour was found for Magnesium ion, whereas Manganese inhibits the synthesis of octacalcium phosphate and it promotes the precipitation of dicalcium phosphate dehydrate. It was also found that Strontium affects the kinetics of the reaction of hydrolysis of α-TCP. It inhibits the conversion from α-TCP to hydroxyapatite. However, the resulting apatitic phase contains significant amounts of Sr2+ suggesting that the addition of Sr2+ to the composition of α-TCP bone cements could be successfully exploited for its local delivery in bone defects. The hydrolysis of α-TCP has been investigated also in the presence of increasing amounts of gelatin: the results indicated that this biopolymer accelerates the hydrolysis reaction and promotes the conversion of α-TCP into OCP, suggesting that its addition in the composition of calcium phosphate cements can be employed to modulate the OCP/HA ratio, and as a consequence the solubility, of the set cement. II. Deposition of modified calcium phosphates on metallic substrates. Coating with a thin film of calcium phosphates is frequently applied on the surface of metallic implants in order to combine the high mechanical strength of the metal with the excellent bioactivity of the calcium phosphates surface layers. During this PhD thesis, thank to the collaboration with prof. I.N. Mihailescu, head of the Laser-Surface-Plasma Interactions Laboratory (National Institute for Lasers, Plasma and Radiation Physics – Laser Department, Bucharest) Pulsed Laser Deposition has been successfully applied to deposit thin films of Sr substituted HA on Titanium substrates. The synthesized coatings displayed a uniform Sr distribution, a granular surface and a good degree of crystallinity which slightly decreased on increasing Sr content. The results of in vitro tests carried out on osteoblast-like and osteoclast cells suggested that the presence of Sr in HA thin films can enhance the positive effect of HA coatings on osteointegration and bone regeneration, and prevent undesirable bone resorption. The possibility to introduce an active molecule in the implant site was explored using Matrix Assisted Pulsed Laser Evaporation to deposit hydroxyapatite nanocrystals at different content of alendronate, a bisphosphonate widely employed in the treatments of pathological diseases associated to bone loss. The coatings displayed a good degree of crystallinity, and the results of in vitro tests indicated that alendronate promotes proliferation and differentiation of osteoblasts even when incorporated into hydroxyapatite. III. Synthesis of drug carriers with a delayed release modulated by a calcium phosphate coating. A core-shell system for modulated drug delivery and release has been developed through optimization of the experimental conditions to cover gelatin microspheres with a uniform layer of calcium phosphate. The kinetics of the release from uncoated and coated microspheres was investigated using aspirin as a model drug. It was shown that the presence of the calcium phosphate shell delays the release of aspirin and allows to modulate its action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphological and functional unit of all the living organisms is the cell. The transmembrane proteins, localized in the plasma membrane of cells, play a key role in the survival of the cells themselves. These proteins perform a variety of different tasks, for example the control of the homeostasis. In order to control the homeostasis, these proteins have to regulate the concentration of chemical elements, like ions, inside and outside the cell. These regulations are fundamental for the survival of the cell and to understand them we need to understand how transmembrane proteins work. Two of the most important categories of transmembrane proteins are ion channels and transporter proteins. The ion channels have been depth studied at the single molecule level since late 1970s with the development of patch-clamp technique. It is not possible to apply this technique to study the transporter proteins so a new technique is under development in order to investigate the behavior of transporter proteins at the single molecule level. This thesis describes the development of a nanoscale single liposome assay for functional studies of transporter proteins based on quantitative fluorescence microscopy in a highly-parallel manner and in real time. The transporter of interest is the prokaryotic transporter Listeria Monocytogenes Ca2+-ATPase1 (LMCA1), a structural analogue of the eukaryotic calcium pumps SERCA and PMCA. This technique will allow the characterization of LMCA1 functionality at the single molecule level. Three systematically characterized fluorescent sensors were tested at the single liposome scale in order to investigate if their properties are suitable to study the function of the transporter of interest. Further studies will be needed in order to characterize the selected calcium sensor and pH sensor both implemented together in single liposomes and in presence of the reconstituted protein LMCA1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone formation and osseointegration of biomaterials are dependent on angiogenesis and vascularization. Angiogenic growth factors such as vascular endothelial growth factor (VEGF) were shown to promote biomaterial vascularization and enhance bone formation. However, high local concentrations of VEGF induce the formation of malformed, nonfunctional vessels. We hypothesized that a continuous delivery of low concentrations of VEGF from calcium phosphate ceramics may increase the efficacy of VEGF administration.VEGF was co-precipitated onto biphasic calcium phosphate (BCP) ceramics to achieve a sustained release of the growth factor. The co-precipitation efficacy and the release kinetics of the protein were investigated in vitro. For in vivo investigations BCP ceramics were implanted into critical size cranial defects in Balb/c mice. Angiogenesis and microvascularization were investigated over 28 days by means of intravital microscopy. The formation of new bone was determined histomorphometrically. Co-precipitation reduced the burst release of VEGF. Furthermore, a sustained, cell-mediated release of low concentrations of VEGF from BCP ceramics was mediated by resorbing osteoclasts. In vivo, sustained delivery of VEGF achieved by protein co-precipitation promoted biomaterial vascularization, osseointegration, and bone formation. Short-term release of VEGF following superficial adsorption resulted in a temporally restricted promotion of angiogenesis and did not enhance bone formation. The release kinetics of VEGF appears to be an important factor in the promotion of biomaterial vascularization and bone formation. Sustained release of VEGF increased the efficacy of VEGF delivery demonstrating that a prolonged bioavailability of low concentrations of VEGF is beneficial for bone regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regular endurance exercise remodels skeletal muscle, largely through the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). PGC-1α promotes fiber type switching and resistance to fatigue. Intracellular calcium levels might play a role in both adaptive phenomena, yet a role for PGC-1α in the adaptation of calcium handling in skeletal muscle remains unknown. Using mice with transgenic overexpression of PGC-1α, we now investigated the effect of PGC-1α on calcium handling in skeletal muscle. We demonstrate that PGC-1α induces a quantitative reduction in calcium release from the sarcoplasmic reticulum by diminishing the expression of calcium-releasing molecules. Concomitantly, maximal muscle force is reduced in vivo and ex vivo. In addition, PGC-1α overexpression delays calcium clearance from the myoplasm by interfering with multiple mechanisms involved in calcium removal, leading to higher myoplasmic calcium levels following contraction. During prolonged muscle activity, the delayed calcium clearance might facilitate force production in mice overexpressing PGC-1α. Our results reveal a novel role of PGC-1α in altering the contractile properties of skeletal muscle by modulating calcium handling. Importantly, our findings indicate PGC-1α to be both down- as well as upstream of calcium signaling in this tissue. Overall, our findings suggest that in the adaptation to chronic exercise, PGC-1α reduces maximal force, increases resistance to fatigue, and drives fiber type switching partly through remodeling of calcium transients, in addition to promoting slow-type myofibrillar protein expression and adequate energy supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism underlying the mineralization of bone is well studied and yet it remains controversial. Inherent difficulties of imaging mineralized tissues and the aqueous solubility of calcium and phosphate, the 2 ions which combine to form bone mineral crystals, limit current analyses of labile diffusible, amorphous, and crystalline intermediates by electron microscopy. To improve the retention of calcium and phosphorus, we developed a pseudo nonaqueous processing approach and used it to characterize biomineralization foci, extracellular sites of hydroxyapatite deposition in osteoblastic cell cultures. Since mineralization of UMR106-01 osteoblasts is temporally synchronized and begins 78 h after plating, we used these cultures to evaluate the effectiveness of our method when applied to cells just prior to the formation of the first mineral crystals. Our approach combines for the first time 3 well-established methods with a fourth one, i.e. dry ultrathin sectioning. Dry ultrathin sectioning with an oscillating diamond knife was used to produce electron spectroscopic images of mineralized biomineralization foci which were high-pressure frozen and freeze substituted. For comparison, cultures were also treated with conventional processing and wet sectioning. The results show that only the use of pseudo nonaqueous processing was able to detect extracellular sites of early calcium and phosphorus enrichment at 76 h, several hours prior to detection of mineral crystals within biomineralization foci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ca(2+) content of the sarcoplasmic reticulum (SR) of cardiac myocytes is thought to play a role in the regulation and termination of SR Ca(2+) release through the ryanodine receptors (RyRs). Experimentally altering the amount of Ca(2+) within the SR with the membrane-permeant low affinity Ca(2+) chelator TPEN could improve our understanding of the mechanism(s) by which SR Ca(2+) content and SR Ca(2+) depletion can influence Ca(2+) release sensitivity and termination. We applied laser-scanning confocal microscopy to examine SR Ca(2+) release in freshly isolated ventricular myocytes loaded with fluo-3, while simultaneously recording membrane currents using the whole-cell patch-clamp technique. Following application of TPEN, local spontaneous Ca(2+) releases increased in frequency and developed into cell-wide Ca(2+) waves. SR Ca(2+) load after TPEN application was found to be reduced to about 60% of control. Isolated cardiac RyRs reconstituted into lipid bilayers exhibited a two-fold increase of their open probability. At the low concentration used (20-40muM), TPEN did not significantly inhibit the SR-Ca(2+)-ATPase in SR vesicles. These results indicate that TPEN, traditionally used as a low affinity Ca(2+) chelator in intracellular Ca(2+) stores, may also act directly on the RyRs inducing an increase in their open probability. This in turn results in an increased Ca(2+) leak from the SR leading to its Ca(2+) depletion. Lowering of SR Ca(2+) content may be a mechanism underlying the recently reported cardioprotective and antiarrhythmic features of TPEN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the effect of continuously released BDNF on peripheral nerve regeneration in a rat model. Initial in vitro evaluation of calcium alginate prolonged-release-capsules (PRC) proved a consistent release of BDNF for a minimum of 8 weeks. In vivo, a worst case scenario was created by surgical removal of a 20-mm section of the sciatic nerve of the rat. Twenty-four autologous fascia tubes were filled with calcium alginate spheres and sutured to the epineurium of both nerve ends. The animals were divided into 3 groups. In group 1, the fascial tube contained plain calcium alginate spheres. In groups 2 and 3, the fascial tube contained calcium alginate spheres with BDNF alone or BDNF stabilized with bovine serum albumin, respectively. The autocannibalization of the operated extremity was clinically assessed and documented in 12 additional rats. The regeneration was evaluated histologically at 4 weeks and 10 weeks in a blinded manner. The length of nerve fibers and the numbers of axons formed in the tube was measured. Over a 10-week period, axons have grown significantly faster in groups 2 and 3 with continuously released BDNF compared to the control. The rats treated with BDNF (groups 2 and 3) demonstrated significantly less autocannibalization than the control group (group 1). These results suggest that BDNF may not only stimulate faster peripheral nerve regeneration provided there is an ideal, biodegradable continuous delivery system but that it significantly reduces the neuropathic pain in the rat model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Cellular Ca(2+) waves are understood as reaction-diffusion systems sustained by Ca(2+)-induced Ca(2+) release (CICR) from Ca(2+) stores. Given the recently discovered sensitization of Ca(2+) release channels (ryanodine receptors; RyRs) of the sarcoplasmic reticulum (SR) by luminal SR Ca(2+), waves could also be driven by RyR sensitization, mediated by SR overloading via Ca(2+) pump (SERCA), acting in tandem with CICR. METHODS: Confocal imaging of the Ca(2+) indicator fluo-3 was combined with UV-flash photolysis of caged compounds and the whole-cell configuration of the patch clamp technique to carry out these experiments in isolated guinea pig ventricular cardiomyocytes. RESULTS: Upon sudden slowing of the SERCA in cardiomyocytes with a photoreleased inhibitor, waves indeed decelerated immediately. No secondary changes of Ca(2+) signaling or SR Ca(2+) content due to SERCA inhibition were observed in the short time-frame of these experiments. CONCLUSIONS: Our findings are consistent with Ca(2+) loading resulting in a zone of RyR 'sensitization' traveling within the SR, but inconsistent with CICR as the predominant mechanism driving the Ca(2+) waves. This alternative mode of RyR activation is essential to fully conceptualize cardiac arrhythmias triggered by spontaneous Ca(2+) release.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim of the study was to investigate the possible mechanisms leading to stunted growth and osteoporosis in experimental arthritis. Fourty-two female rats of 7-8 weeks of age were randomly assigned to three groups of 14 animals each: (a) controls; (b) adjuvant-inoculated (AA); and (c) adjuvant-inoculated rats receiving 10 mg cyclosporin A (CsA) orally for 30 days. Biological parameters studied were: hindpaw swelling; vertebral length progression expressed as Delta increments between days 1 and 30 as a parameter of skeletal growth, and estimation of total skeletal mineral content by dual energy X-ray absorptiometry (n=10 each group) on day 30. Endocrine parameters measured were pulsatile release of growth hormone (rGH) on day 30 following jugular cannulation and measurement of insulin-like growth factor (IGF-1) in pooled plasma from rGH profiles. Results can be summarized as follows: Untreated AA rats exhibited local signs of inflammation in comparison with controls (hindpaw diameter 8.1-8.9 mm vs. 5.3-5.6 mm in controls). Treatment with CsA normalized this parameter (4.9-5.6 mm). Vertebral growth was significantly retarded in AA rats in comparison with controls (214+/-32 vs. 473+/-33 microm; p<0.001). Administration of CsA normalized vertebral size increment with a clear tendency to overgrowth (523+/-43 microm, n.s.). There was also a marked reduction in total skeletal mineral content in diseased (AA) rats as compared to controls (5.8+/-0.1 vs. 7.5+/-0.1g [OH-apatite]; p<0.001), and a moderate but significant increment above controls in the group receiving CsA (8.0+/-0.1 vs. 7.5+/-0.1g [OH-appatite]; p<0.04). Integrated rGH profiles exhibited a significant fall in arthritic rats and were completely restored to normal under CsA treatment. A trend toward higher rGH values was observed in the latter group (2908+/-554 in AA vs. 8317+/-1492 ng/ml/240 min in controls; p<0.001, and 10940+/-222 ng/ml/240 min, n.s. in the CsA group). There was a good correlation between skeletal growth and rGH pulsatility (r=0.81; p<0.001). IGF-1 followed a similar pattern (630+/-44 in AA vs. 752+/-30 ng/ml in controls; p<0.04, and 769+/-59 ng/ml in the CsA group, n.s. vs. controls). Thus, a clear tendency to skeletal overgrowth following treatment was observed in agreement with the hormonal data. It can therefore be concluded that, in experimental arthritis, attenuated GH-spiking and reduced circulating IGF-1 appear to be causally related to growth retardation, probably mimicking signs and symptoms observed in juvenile arthritis. Therapy with CsA is followed by normalization of hormonal and biological parameters accompanied by a catch up phenomenon in skeletal growth which is also observed clinically in juvenile arthritis. Generalized osteopenia is a prominent feature seemingly connected with the growth abnormalities as they parallel each other during the evolution of the disease and respond equally to therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Renal calcium stones and hypercalciuria are associated with a reduced bone mineral density (BMD). Therefore, the effect of changes in calcium homeostasis is of interest for both stones and bones. We hypothesized that the response of calciuria, parathyroid hormone (PTH) and 1.25 vitamin D to changes in dietary calcium might be related to BMD. METHODS: A single-centre prospective interventional study of 94 hyper- and non-hypercalciuric calcium stone formers consecutively retrieved from our stone clinic. The patients were investigated on a free-choice diet, a low-calcium diet, while fasting and after an oral calcium load. Patient groups were defined according to lumbar BMD (z-score) obtained by dual X-ray absorptiometry (group 1: z-score <-0.5, n = 30; group 2: z-score -0.5-0.5, n = 36; group 3: z-score >0.5, n = 28). The effect of the dietary interventions on calciuria, 1.25 vitamin D and PTH in relation to BMD was measured. RESULTS: An inverse relationship between BMD and calciuria was observed on all four calcium intakes (P = 0.009). On a free-choice diet, 1.25 vitamin D and PTH levels were identical in the three patient groups. However, the relative responses of 1.25 vitamin D and PTH to the low-calcium diet were opposite in the three groups with the highest increase of 1.25 vitamin D in group 1 and the lowest in group 3, whereas PTH increase was most pronounced in group 3 and least in group 1. CONCLUSION: Calcium stone formers with a low lumbar BMD exhibit a blunted response of PTH release and an apparently overshooting production of 1.25 vitamin D following a low-calcium diet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Almost all regions of the brain receive one or more neuromodulatory inputs, and disrupting these inputs produces deficits in neuronal function. Neuromodulators act through intracellular second messenger pathways to influence the electrical properties of neurons, integration of synaptic inputs, spatio-temporal firing dynamics of neuronal networks, and, ultimately, systems behavior. Second messengers pathways consist of series of bimolecular reactions, enzymatic reactions, and diffusion. Calcium is the second messenger molecule with the most effectors, and thus is highly regulated by buffers, pumps and intracellular stores. Computational modeling provides an innovative, yet practical method to evaluate the spatial extent, time course and interaction among second messenger pathways, and the interaction of second messengers with neuron electrical properties. These processes occur both in compartments where the number of molecules are large enough to describe reactions deterministically (e.g. cell body), and in compartments where the number of molecules is small enough that reactions occur stochastically (e.g. spines). – In this tutorial, I explain how to develop models of second messenger pathways and calcium dynamics. The first part of the tutorial explains the equations used to model bimolecular reactions, enzyme reactions, calcium release channels, calcium pumps and diffusion. The second part explains some of the GENESIS, Kinetikit and Chemesis objects that implement the appropriate equations. In depth explanation of calcium and second messenger models is provided by reviewing code, both in XPP, Chemesis and Kinetikit, that implements simple models of calcium dynamics and second messenger cascades.