1000 resultados para C-phycocyanin
Resumo:
Six crystal structures of substituted 2-chloroquinoline derivatives have been analysed to evaluate the role of Cl atom as a self recognizing unit resulting in the formation of Cl center dot center dot center dot Cl and C-H center dot center dot center dot Cl interactions to generate supramolecular assembly in the solid state. The features of Type I and Type II geometries associated with Cl center dot center dot center dot Cl interactions have been analysed to show directional preferences leading to differences in the packing motifs in these crystal structures. C-H center dot center dot center dot Cl interactions are generated exclusively in structures depicting Type II Cl center dot center dot center dot Cl interaction have been observed in these structures.
Resumo:
The protein kinases (PKs) belong to the largest single family of enzymes, phosphotransferases, which catalyze the phosphorylation of other enzymes and proteins and function primarily in signal transduction. Consequently, PKs regulate cell mechanisms such as growth, differentiation, and proliferation. Dysfunction of these cellular mechanisms may lead to cancer, a major predicament in health care. Even though there is a range of clinically available cancer-fighting drugs, increasing number of cancer cases and setbacks such as drug resistance, constantly keep cancer research active. At the commencement of this study an isophthalic acid derivative had been suggested to bind to the regulatory domain of protein kinase C (PKC). In order to investigate the biological effects and structure-activity relationships (SARs) of this new chemical entity, a library of compounds was synthesized. The best compounds induced apoptosis in human leukemia HL-60 cells and were not cytotoxic in Swiss 3T3 fibroblasts. In addition, the best apoptosis inducers were neither cytotoxic nor mutagenic. Furthermore, results from binding affinity assays of PKC isoforms revealed the pharmacophores of these isophthalic acid derivatives. The best inhibition constants of the tested compounds were measured to 210 nM for PKCα and to 530 nM for PKCδ. Among natural compounds targeting the regulatory domain of PKC, the target of bistramide A has been a matter of debate. It was initially found to activate PKCδ; however, actin was recently reported as the main target. In order to clarify and to further study the biological effects of bistramide A, the total syntheses of the natural compound and two isomers were performed. Biological assays of the compounds revealed accumulation of 4n polyploid cells as the primary mode of action and the compounds showed similar overall antiproliferative activities. However, each compound showed a distinct distribution of antimitotic effect presumably via actin binding, proapoptotic effect presumably via PKCδ, and pro-differentiation effect as evidenced by CD11b expression. Furthermore, it was shown that the antimitotic and proapoptotic effects of bistramide A were not secondary effects of actin binding but independent effects. The third aim in this study was to synthesize a library of a new class of urea-based type II inhibitors targeted at the kinase domain of anaplastic lymphoma kinase (ALK). The best compounds in this library showed IC50 values as low as 390 nM for ALK while the initial low cellular activities were successfully increased even by more than 70 times for NPM-ALK- positive BaF3 cells. More importantly, selective antiproliferative activity on ALK-positive cell lines was achieved; while the best compound affected the BaF3 and SU-DHL-1 cells with IC50 values of 0.5 and 0.8 μM, respectively, they were less toxic to the NPM-ALK-negative human leukemic cells U937 (IC50 = 3.2 μM) and BaF3 parental cells (IC50 = 5.4 μM). Furthermore, SAR studies of the synthesized compounds revealed functional groups and positions of the scaffold, which enhanced the enzymatic and cellular activities.
Resumo:
Campylobacter, mainly Campylobacter jejuni and C. coli, are worldwide recognized as a major cause of bacterial food-borne gastroenteritis. Epidemiological studies have shown handling or eating of poultry to be significant risk factors for human infections. Campylobacter contamination can occur at all stages of a poultry meat production cycle. The aim of this thesis was to study the occurrence and diversity of Campylobacter in broiler and turkey production in Finland. In summer 1999, 2.9 % of slaughtered broiler flocks were Campylobacter-positive. From the isolated strains 94 % were C. jejuni and 6% were C. coli. During years 2005-2006 one turkey parent flock, the hatchery, six different commercial turkey farms and different stages of the slaughterhouse were monitored during one and the half year. No Campylobacter were detected in either of the samples from the turkey parent flock or from the hatchery using the culture method. Instead PCR detected DNA of Campylobacter from the turkey parent flock and samples from the hatchery. Six out of 12 commercial turkey flocks were found negative at the farm level but only two of those were negative at slaughter. Campylobacter-positive samples within the flock at slaughter were detected between 0% and 94% with evisceration and chilling water being the most critical stages for contamination. All of Campylobacter isolates were shown to be C. jejuni. Campylobacter-positive turkey flocks were colonized by a limited number of Campylobacter genotypes both at the farm and slaughter level. In conclusion, in our first study in 1999 a low prevalence of Campylobacter in Finnish broiler flocks was detected and it has remained at a low level during the study period until the present. In the turkey meat production, we found that flocks which were negative at the farm became contaminated with Campylobacter at the slaughter process. These results suggest that proper and efficient cleaning and disinfection of slaughter and processing premises are needed to avoid cross-contamination. Prevention of colonization at the farm by a high level of biosecurity control and hygiene may be one of the most efficient ways to reduce the amount of Campylobacter-positive poultry meat in Finland. With a persistent low level of Campylobacter-positive flocks, it could be speculated that the use of logistic slaughtering, according to Campylobacter status at farm, might have be advantageous in reducing Campylobacter contamination of retail poultry products. However, the significance of the domestic poultry meat for human campylobacteriosis in Finland should be evaluated.
Resumo:
In order to identify the functionally relevant epitopes on chicken riboflavin carrier protein, we have raised monoclonal antibodies to the vitamin carrier. One of these, 6B2C12, was found to interact specifically with a synthetic oligopeptide corresponding to the C-terminal 17 amino acid residues of the chicken egg white riboflavin carrier protein, which is missing in part in the egg yolk riboflavin carrier protein. This epitope is conserved through evolution in mammals including humans. Administration of the ascites fluid of 6B2C12 to pregnant mice intraperitoneally, resulted in the termination of pregnancy indicating that this epitope is involved in or closely associated with the transplacental transport of the vitamin from the maternal circulation to the growing fetus.
Resumo:
A minor addition of B to the Ti-6Al-4V alloy, by similar to 0.1 wt pct, reduces its as-cast prior beta grain size by an order of magnitude, whereas higher B content leads to the presence of in situ formed TiB needles in significant amounts. An experimental investigation into the role played by these microstructural modifications on the high-temperature deformation behavior of Ti-6Al-4V-xB alloys, with x varying between 0 wt pct and 0.55 wt pct, was conducted. Uniaxial compression tests were performed in the temperature range of 1023 K to 1273 K (750 degrees C to 1000 degrees C) and in the strain rate range of 10(-3) to 10(+1) s(-1). True stress-true strain responses of all alloys exhibit flow softening at lower strain rates and oscillations at higher strain rates. The flow softening is aided by the occurrence of dynamic recrystallization through lath globularization in high temperature (1173 K to 1273 K 900 degrees C to 1000 degrees C]) and a lower strain rate (10(-2) to 10(-3) s(-1)) regime. The grain size refinement with the B addition to Ti64, despite being marked, had no significant effect on this. Oscillations in the flow curve at a higher strain rate (10(0) to 10(+1) s(-1)), however, are associated with microstructural instabilities such as bending of laths, breaking of lath boundaries, generation of cavities, and breakage of TiB needles. The presence of TiB needles affected the instability regime. Microstructural evidence suggests that the matrix cavitation is aided by the easy fracture of TiB needles.
Resumo:
The oxidative activity of mitochondria freshly isolated from brown adipose tissue of rats was stimulated two-fold on the addition of small concentrations of exogenous cytochrome c to the reaction medium. Loss of membrane-bound cytochrome c did not occur during isolation of mitochondria. Estimation of the high-affinity binding sites on the organelle membrane indicated that less than a third of these sites remained saturated with cytochrome c. The pigment is thus shown to be a functionally limiting electron transport component in brown adipose tissue.
Resumo:
Campylobacter, mainly Campylobacter jejuni and C. coli, are worldwide recognized as a major cause of bacterial food-borne gastroenteritis (World Health Organization 2010). Epidemiological studies have shown handling or eating of poultry to be significant risk factors for human infections. Campylobacter contamination can occur at all stages of a poultry meat production cycle. In summer 1999, every broiler flock from all three major Finnish poultry slaughterhouses was studied during a five month period. Caecal samples were taken in the slaughterhouses from five birds per flock. A total of 1 132 broiler flocks were tested and 33 (2.9%) of those were Campylobacter-positive. Thirty-one isolates were identified as C. jejuni and two isolates were C. coli. The isolates were serotyped for heat-stable antigens (HS) and genotyped by pulsed-field gel electrophoresis (PFGE). The most common serotypes found were HS 6,7, 12 and 4-complex. Using a combination of SmaI and KpnI patterns, 18 different PFGE types were identified. Thirty-five Finnish C. jejuni strains with five SmaI/SacII PFGE types selected among human and chicken isolates from 1997 and 1998 were used for comparison of their PFGE patterns, amplified fragment length polymorphism (AFLP) patterns, HaeIII ribotypes, and HS serotypes. The discriminatory power of PFGE, AFLP and ribotyping with HaeIII were shown to be at the same level for this selected set of strains, and these methods assigned the strains into the same groups. The PFGE and AFLP patterns within a genotype were highly similar, indicating genetic relatedness. An HS serotype was distributed among different genotypes, and different serotypes were identified within one genotype. From one turkey parent flock, the hatchery, six different commercial turkey farms (together 12 flocks) and from 11 stages at the slaughterhouse a total of 456 samples were collected during one and the half year. For the detection of Campylobacter both conventional culture and a PCR method were used. No Campylobacter were detected in either of the samples from the turkey parent flock or from the hatchery samples using the culture method. Instead PCR detected DNA of Campylobacter in five faecal samples from the turkey parent flock and in one fluff and an eggshell sample. Six out of 12 commercial turkey flocks were found negative at the farm level but only two of those were negative at slaughter. Campylobacter-positive samples within the flock at slaughter were detected between 0% and 94%, with evisceration and chilling water being the most critical stages for contamination. All of a total of 121 Campylobacter isolates were shown to be C. jejuni using a multiplex PCR assay. PFGE analysis of all isolates with KpnI restriction enzyme resulted in 11 PFGE types (I-XI) and flaA-SVR typing yielded nine flaA-SVR alleles. Three Campylobacter-positive turkey flocks were colonized by a limited number of Campylobacter genotypes both at the farm and slaughter level.In conclusion, in our first study in 1999 a low prevalence of Campylobacter in Finnish broiler flocks was detected and it has remained at a low level during the study period until the present. In the turkey meat production, we found that flocks which were negative at the farm became contaminated with Campylobacter at the slaughter process. These results suggest that proper and efficient cleaning and disinfection of slaughter and processing premises are needed to avoid cross-contamination. Prevention of colonization at the farm by a high level of biosecurity control and hygiene may be one of the most efficient ways to reduce the amount of Campylobacter-positive poultry meat in Finland. In Finland, with a persistent low level of Campylobacter-positive flocks, it could be speculated that the use of logistic slaughtering, according to Campylobacter status at farm, might have be advantageous in reducing Campylobacter contamination of retail poultry products. However, the significance of the domestic poultry meat for human campylobacteriosis in Finland should be evaluated.
Resumo:
The finding that peptides containing -amino acid residues give rise to folding patterns hitherto unobserved in -amino acid peptides[1] has stimulated considerable interest in the conformational properties of peptides built from , and residues,[2] as the introduction of additional methylene (CH2) units into peptide chains provides further degrees of conformational freedom.
Resumo:
The serendipitous observation of a C–Hcdots, three dots, centeredO hydrogen bond mediated polypeptide chain reversal in synthetic peptide helices has led to a search for the occurrence of a similar motif in protein structures. From a dataset of 634 proteins, 1304 helices terminating in a Schellman motif have been examined. The C–Hcdots, three dots, centeredO interaction between the T−4 CαH and T+1 C=O group (Ccdots, three dots, centeredO≤3.5 Å) becomes possible only when the T+1 residue adopts an extended β conformation (T is defined as the helix terminating residue adopting an αL conformation). In all, 111 examples of this chain reversal motif have been identified and the compositional and conformational preferences at positions T−4, T, and T+1 determined. A marked preference for residues like Ser, Glu and Gln is observed at T−4 position with the motif being further stabilized by the formation of a side-chain–backbone Ocdots, three dots, centeredH–N hydrogen bond involving the side-chain of residue T−4 and the N–H group of residue T+3. In as many as 57 examples, the segment following the helix was extended with three to four successive residues in β conformation. In a majority of these cases, the succeeding β strand lies approximately antiparallel with the helix, suggesting that the backbone C–Hcdots, three dots, centeredO interactions may provide a means of registering helices and strands in an antiparallel orientation. Two examples were identified in which extended registry was detected with two sets of C–Hcdots, three dots, centeredO hydrogen bonds between (T−4) CαHcdots, three dots, centeredC=O (T+1) and (T−8) CαHcdots, three dots, centeredC=O (T+3).
Resumo:
A BEM formulation to obtain the inelastic response of R.C. Beam-Column joints subjected to sinusoidal loading along the boundary is presented. The equations of motion are written along with kinematical and constitutive equations. The dynamic reciprocal theorem is presented and the temporal dependence is removed by assuming steady state response.
Resumo:
The structural characterization in crystals of three designed decapeptides containing a double D-segment at the C-terminus is described. The crystal structures of the peptides Boc-Leu-Aib-Val-Xxx-Leu-Aib-Val- (D)Ala-(D)Leu-Aib-OMe, (Xxx = Gly 2, (D)Ala 3, Aib 4) have been determined and compared with those reported earlier for peptide 1 (Xxx = Ala) and the all L analogue Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-OMe, which yielded a perfect right-handed a-helical structure. Peptides 1 and 2 reveal a right-handed helical segment spanning residues 1 to 7, ending in a Schellman motif with Ala(8) functioning as the terminating residue. Polypeptide chain reversal occurs at residue 9, a novel feature that appears to be the consequence of a C-(HO)-O-... hydrogen bond between residue 4 (CH)-H-alpha and residue 9 CO groups. The structures of peptides 3 and 4, which lack the pro R hydrogen at the C-alpha atom of residue 4, are dramatically different. Peptide 3 adopts a right-handed helical conformation over the 1 to 7 segment. Residues 8 and 9 adopt at conformations forming a C-terminus type I' beta-turn, corresponding to an incipient left-handed twist of the polypeptide chain. In peptide 4, helix termination occurs at Aib(6), with residues 6 to 9 forming a left-handed helix, resulting in a structure that accommodates direct fusion of two helical segments of opposite twist. Peptides 3 and 4 provide examples of chiral residues occurring in the less favored sense of helical twist; (D)Ala(4) in peptide 3 adopts an alpha(R) conformation, while (L)Val(7) in 4 adopts an alpha(L) conformation. The structural comparison of the decapeptides reported here provides evidence for the role of specific C-(HO)-O-... hydrogen bonds in stabilizing chain reversals at helix termini, which may be relevant in aligning contiguous helical and strand segments in polypeptide structures.