913 resultados para C-jun Kinase
Resumo:
Intravital imaging has revealed that T cells change their migratory behavior during physiological activation inside lymphoid tissue. Yet, it remains less well investigated how the intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels or other regulatory elements. Here, we used an adjuvant-driven inflammation model to examine how motility patterns corresponded with CCR7, CXCR4, and CXCR5 expression levels on ovalbumin-specific DO11.10 CD4(+) T cells in draining lymph nodes. We found that while CCR7 and CXCR4 surface levels remained essentially unaltered during the first 48-72 h after activation of CD4(+) T cells, their in vitro chemokinetic and directed migratory capacity to the respective ligands, CCL19, CCL21, and CXCL12, was substantially reduced during this time window. Activated T cells recovered from this temporary decrease in motility on day 6 post immunization, coinciding with increased migration to the CXCR5 ligand CXCL13. The transiently impaired CD4(+) T cell motility pattern correlated with increased LFA-1 expression and augmented phosphorylation of the microtubule regulator Stathmin on day 3 post immunization, yet neither microtubule destabilization nor integrin blocking could reverse TCR-imprinted unresponsiveness. Furthermore, protein kinase C (PKC) inhibition did not restore chemotactic activity, ruling out PKC-mediated receptor desensitization as mechanism for reduced migration in activated T cells. Thus, we identify a cell-intrinsic, chemokine receptor level-uncoupled decrease in motility in CD4(+) T cells shortly after activation, coinciding with clonal expansion. The transiently reduced ability to react to chemokinetic and chemotactic stimuli may contribute to the sequestering of activated CD4(+) T cells in reactive peripheral lymph nodes, allowing for integration of costimulatory signals required for full activation.
Resumo:
The Ser/Thr protein kinase C (PKC) isozyme family plays an important role in cell growth and differentiation and also contributes to key events in the development and progression of cancer. PKC isozymes are activated by phospholipid-dependent mechanisms, and they are also subject to oxidative activation and inactivation. Oxidative regulatory mechanisms are important in the governance of PKC isozyme action. While oxidative PKC activation involves phospho-tyrosine (P-Y) stabilization, the molecular mechanism(s) for oxidative PKC inactivation have not been defined. We previously reported that Thr → Cys peptide-substrate analogs inactivate several PKC isozymes including PKC-α via S-thiolation, i.e., by forming disulfides with PKC thiols. This inactivation mechanism is chemically analogous to protein S-glutathiolation, a post-translational modification that has been shown to oxidatively regulate several enzymes. To determine if PKC-α could be inactivated by S-glutathiolation, we employed the thiol-specific oxidant diamide (0.01–10mM) and 100μM glutathione (GSH). Diamide alone (0.1–5.0 mM) weakly inactivated PKC-α (<20%), and GSH alone had no effect on the isozyme activity. Marked potentiation of diamide-induced PKC-α inactivation (>90%) was achieved by 100μM GSH, resulting in full inactivation of the isozyme. Inactivation was reversed by DTT, consistent with a mechanism involving PKC-α S-glutathiolation. S-glutathiolation was demonstrated as DTT-reversible incorporation of [35S] GSH into PKC-α isozyme structure. These results indicate that a mild oxidative stimulus can inactivate purified PKC-α via S-glutathiolation. In addition, diamide treatment of metabolically labeled NIH3T3 cells induced potent PKC-α inactivation via isozyme [35S] S-thiolation. These results indicate that cellular PKC-α can be regulated via S-glutathiolation. ^
Resumo:
The ubiquitously expressed nonreceptor tyrosine kinase c-Abl contains three nuclear localization signals, however, it is found in both the nucleus and the cytoplasm of proliferating fibroblasts. A rapid and transient loss of c-Abl from the nucleus is observed upon the initial adhesion of fibroblasts onto a fibronectin matrix, suggesting the possibility of nuclear export [Lewis, J., Baskaran, R., Taagepera, S., Schwartz, M. & Wang, J. (1996) Proc. Natl. Acad. Sci. USA 93, 15174–15179]. Here we show that the C terminus of c-Abl does indeed contain a functional nuclear export signal (NES) with the characteristic leucine-rich motif. The c-Abl NES can functionally complement an NES-defective HIV Rev protein (RevΔ3NI) and can mediate the nuclear export of glutathione-S-transferase. The c-Abl NES function is sensitive to the nuclear export inhibitor leptomycin B. Mutation of a single leucine (L1064A) in the c-Abl NES abrogates export function. The NES-mutated c-Abl, termed c-Abl NES(−), is localized exclusively to the nucleus. Treatment of cells with leptomycin B also leads to the nuclear accumulation of wild-type c-Abl protein. The c-Abl NES(−) is not lost from the nucleus when detached fibroblasts are replated onto fibronectin matrix. Taken together, these results demonstrate that c-Abl shuttles continuously between the nucleus and the cytoplasm and that the rate of nuclear import and export can be modulated by the adherence status of fibroblastic cells.
Resumo:
Myosin I heavy chain kinase from Acanthamoeba castellanii is activated in vitro by autophosphorylation (8–10 mol of P per mol). The catalytically active C-terminal domain produced by trypsin cleavage of the phosphorylated kinase contains 2–3 mol of P per mol. However, the catalytic domain expressed in a baculovirus–insect cell system is fully active as isolated without autophosphorylation in vitro. We now show that the expressed catalytic domain is inactivated by incubation with acid phosphatase and regains activity upon autophosphorylation. The state of phosphorylation of all of the hydroxyamino acids in the catalytic domain were determined by mass spectrometry of unfractionated protease digests. Ser-627 was phosphorylated in the active, expressed catalytic domain, lost its phosphate when the protein was incubated with phosphatase, and was rephosphorylated when the dephosphorylated protein was incubated with ATP. No other residue was significantly phosphorylated in any of the three samples. Thus, phosphorylation of Ser-627, which is in the same position as the Ser and Thr residues that are phosphorylated in many other kinases, is necessary and sufficient for full activity of the catalytic domain. Ser-627 is also phosphorylated when full-length, native kinase is activated by autophosphorylation.
Resumo:
Recent epidemiological studies indicate beneficial effects of moderate ethanol consumption in ischemic heart disease. Most studies, however, focus on the effect of long-term consumption of ethanol. In this study, we determined whether brief exposure to ethanol immediately before ischemia also produces cardioprotection. In addition, because protein kinase C (PKC) has been shown to mediate protection of the heart from ischemia, we determined the role of specific PKC isozymes in ethanol-induced protection. We demonstrated that (i) brief exposure of isolated adult rat cardiac myocytes to 10–50 mM ethanol protected against damage induced by prolonged ischemia; (ii) an isozyme-selective ɛPKC inhibitor developed in our laboratory inhibited the cardioprotective effect of acute ethanol exposure; (iii) protection of isolated intact adult rat heart also occurred after incubation with 10 mM ethanol 20 min before global ischemia; and (iv) ethanol-induced cardioprotection depended on PKC activation because it was blocked by chelerythrine and GF109203X, two PKC inhibitors. Consumption of 1–2 alcoholic beverages in humans leads to blood alcohol levels of ≈10 mM. Therefore, our work demonstrates that exposure to physiologically attainable ethanol levels minutes before ischemia provides cardioprotection that is mediated by direct activation of ɛPKC in the cardiac myocytes. The potential clinical implications of our findings are discussed.
Resumo:
Brief periods of cardiac ischemia trigger protection from subsequent prolonged ischemia (preconditioning). ɛ Protein kinase C (ɛPKC) has been suggested to mediate preconditioning. Here, we describe an ɛPKC-selective agonist octapeptide, ψɛ receptor for activated C-kinase (ψɛRACK), derived from an ɛPKC sequence homologous to its anchoring protein, ɛRACK. Introduction of ψɛRACK into isolated cardiomyocytes, or its postnatal expression as a transgene in mouse hearts, increased ɛPKC translocation and caused cardio-protection from ischemia without any deleterious effects. Our data demonstrate that ɛPKC activation is required for protection from ischemic insult and suggest that small molecules that mimic this ɛPKC agonist octapeptide provide a powerful therapeutic approach to protect hearts at risk for ischemia.
Resumo:
Increased cardiovascular mortality occurs in diabetic patients with or without coronary artery disease and is attributed to the presence of diabetic cardiomyopathy. One potential mechanism is hyperglycemia that has been reported to activate protein kinase C (PKC), preferentially the β isoform, which has been associated with the development of micro- and macrovascular pathologies in diabetes mellitus. To establish that the activation of the PKCβ isoform can cause cardiac dysfunctions, we have established lines of transgenic mice with the specific overexpression of PKCβ2 isoform in the myocardium. These mice overexpressed the PKCβ2 isoform transgene by 2- to 10-fold as measured by mRNA, and proteins exhibited left ventricular hypertrophy, cardiac myocyte necrosis, multifocal fibrosis, and decreased left ventricular performance without vascular lesions. The severity of the phenotypes exhibited gene dose-dependence. Up-regulation of mRNAs for fetal type myosin heavy chain, atrial natriuretic factor, c-fos, transforming growth factor, and collagens was also observed. Moreover, treatment with a PKCβ-specific inhibitor resulted in functional and histological improvement. These findings have firmly established that the activation of the PKCβ2 isoform can cause specific cardiac cellular and functional changes leading to cardiomyopathy of diabetic or nondiabetic etiology.
Resumo:
We previously reported the presence of a novel variant (β-T594M) of the amiloride-sensitive Na+ channel (ASSC) in which the threonine residue at position 594 in the β-subunit has been replaced by a methionine residue. Electrophysiological studies of the ASSC on Epstein–Barr virus (EBV)-transformed lymphocytes carrying this variant showed that the 8-(4-chlorophenylthio) adenosine 3′:5′-cyclic monophosphate (8cpt-cAMP)-induced responses were enhanced when compared to wild-type EBV-transformed lymphocytes. Furthermore, in wild-type EBV-transformed cells, the 8cpt-cAMP-induced response was totally blocked by the phorbol ester, phorbol 12-myristate 13-acetate (PMA). This inhibitory effect of PMA was blocked by a protein kinase C inhibitor, chelerythrine. We now have identified individuals who are homozygous for this variant, and showed that PMA had no effect on the 8cpt-cAMP-induced responses in the EBV-transformed lymphocytes from such individuals. Cells heterozygous for this variant showed mixed responses to PMA, with the majority of cells partially inhibited by PMA. Our results demonstrate that an alteration in a single amino acid residue in the β-subunit of the ASSC can lead to a total loss of inhibition to PMA, and establish the β-subunit as having an important role in conferring a regulatory effect on the ASSC of lymphocytes.
Resumo:
Subcellular localization directed by specific A kinase anchoring proteins (AKAPs) is a mechanism for compartmentalization of cAMP-dependent protein kinase (PKA). Using a two-hybrid screen, a novel AKAP was isolated. Because it interacts with both the type I and type II regulatory subunits, it was defined as a dual specific AKAP or D-AKAP1. Here we report the cloning and characterization of another novel cDNA isolated from that screen. This new member of the D-AKAP family, D-AKAP2, also binds both types of regulatory subunits. A message of 5 kb pairs was detected for D-AKAP2 in all embryonic stages and in all adult tissues tested. In brain, skeletal muscle, kidney, and testis, a 10-kb mRNA was identified. In testis, several small mRNAs were observed. Therefore, D-AKAP2 represents a novel family of proteins. cDNA cloning from a mouse testis library identified the full length D-AKAP2. It is composed of 372 amino acids which includes the R binding fragment, residues 333–372, at its C-terminus. Based on coprecipitation assays, the R binding domain interacts with the N-terminal dimerization domain of RIα and RIIα. A putative RGS domain was identified near the N-terminal region of D-AKAP2. The presence of this domain raises the intriguing possibility that D-AKAP2 may interact with a Gα protein thus providing a link between the signaling machinery at the plasma membrane and the downstream kinase.
Resumo:
Protein kinase C (PKC) isoforms, α, βI, and γ of cPKC subgroup, δ and ɛ of nPKC subgroup, and ζ of aPKC subgroup, were tyrosine phosphorylated in COS-7 cells in response to H2O2. These isoforms isolated from the H2O2-treated cells showed enhanced enzyme activity to various extents. The enzymes, PKC α and δ, recovered from the cells were independent of lipid cofactors for their catalytic activity. Analysis of mutated molecules of PKC δ showed that tyrosine residues, which are conserved in the catalytic domain of the PKC family, are critical for PKC activation induced by H2O2. These results suggest that PKC isoforms can be activated through tyrosine phosphorylation in a manner unrelated to receptor-coupled hydrolysis of inositol phospholipids.
Resumo:
Synapsin I is a synaptic vesicle-associated phosphoprotein that has been implicated in the formation of presynaptic specializations and in the regulation of neurotransmitter release. The nonreceptor tyrosine kinase c-Src is enriched on synaptic vesicles, where it accounts for most of the vesicle-associated tyrosine kinase activity. Using overlay, affinity chromatography, and coprecipitation assays, we have now shown that synapsin I is the major binding protein for the Src homology 3 (SH3) domain of c-Src in highly purified synaptic vesicle preparations. The interaction was mediated by the proline-rich domain D of synapsin I and was not significantly affected by stoichiometric phosphorylation of synapsin I at any of the known regulatory sites. The interaction of purified c-Src and synapsin I resulted in a severalfold stimulation of tyrosine kinase activity and was antagonized by the purified c-Src-SH3 domain. Depletion of synapsin I from purified synaptic vesicles resulted in a decrease of endogenous tyrosine kinase activity. Portions of the total cellular pools of synapsin I and Src were coprecipitated from detergent extracts of rat brain synaptosomal fractions using antibodies to either protein species. The interaction between synapsin I and c-Src, as well as the synapsin I-induced stimulation of tyrosine kinase activity, may be physiologically important in signal transduction and in the modulation of the function of axon terminals, both during synaptogenesis and at mature synapses.
Resumo:
We have studied signaling mechanisms that stimulate exocytosis and luteinizing hormone secretion in isolated male rat pituitary gonadotropes. As judged by reverse hemolytic plaque assays, phorbol-12-myristate-13-acetate (PMA) stimulates as many gonadotropes to secrete as does gonadotropin-releasing hormone (GnRH). However, PMA and GnRH use different signaling pathways. The secretagogue action of GnRH is not very sensitive to bisindolylmaleimide I, an inhibitor of protein kinase C, but is blocked by loading cells with a calcium chelator, 1,2-bis-(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid. The secretagogue action of PMA is blocked by bisindolylmaleimide I and is not very sensitive to the intracellular calcium chelator. GnRH induces intracellular calcium elevations, whereas PMA does not. As judged by amperometric measurements of quantal catecholamine secretion from dopamine- or serotonin-loaded gonadotropes, the secretagogue action of PMA develops more slowly (in several minutes) than that of GnRH. We conclude that exocytosis of secretory vesicles can be stimulated independently either by calcium elevations or by activation of protein kinase C.
Resumo:
We have studied the effect of the cholinergic agonist carbachol on the spontaneous release of glutamate in cultured rat hippocampal cells. Spontaneous excitatory postsynaptic currents (sEPSCs) through glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type channels were recorded by means of the patch-clamp technique. Carbachol increased the frequency of sEPSCs in a concentration-dependent manner. The kinetic properties of the sEPSCs and the amplitude distribution histograms were not affected by carbachol, arguing for a presynaptic site of action. This was confirmed by measuring the turnover of the synaptic vesicular pool by means of the fluorescent dye FM 1–43. The carbachol-induced increase in sEPSC frequency was not mimicked by nicotine, but could be blocked by atropine or by pirenzepine, a muscarinic cholinergic receptor subtype M1 antagonist. Intracellular Ca2+ signals recorded with the fluorescent probe Fluo-3 indicated that carbachol transiently increased intracellular Ca2+ concentration. Since, however, carbachol still enhanced the sEPSC frequency in bis(2-aminophenoxy)ethane-N,N,N′,N′-tetra-acetate-loaded cells, this effect could not be attributed to the rise in intracellular Ca2+ concentration. On the other hand, the protein kinase inhibitor staurosporine as well as a down-regulation of protein kinase C by prolonged treatment of the cells with 4β-phorbol 12-myristate 13-acetate inhibited the carbachol effect. This argues for an involvement of protein kinase C in presynaptic regulation of spontaneous glutamate release. Adenosine, which inhibits synaptic transmission, suppressed the carbachol-induced stimulation of sEPSCs by a G protein-dependent mechanism activated by presynaptic A1-receptors.
Resumo:
Activation of protein kinase C (PKC) protects the heart from ischemic injury; however, its mechanism of action is unknown, in part because no model for chronic activation of PKC has been available. To test whether chronic, mild elevation of PKC activity in adult mouse hearts results in myocardial protection during ischemia or reperfusion, hearts isolated from transgenic mice expressing a low level of activated PKCβ throughout adulthood (β-Tx) were compared with control hearts before ischemia, during 12 or 28 min of no-flow ischemia, and during reperfusion. Left-ventricular-developed pressure in isolated isovolumic hearts, normalized to heart weight, was similar in the two groups at baseline. However, recovery of contractile function was markedly improved in β-Tx hearts after either 12 (97 ± 3% vs. 69 ± 4%) or 28 min of ischemia (76 ± 8% vs. 48 ± 3%). Chelerythrine, a PKC inhibitor, abolished the difference between the two groups, indicating that the beneficial effect was PKC-mediated. 31P NMR spectroscopy was used to test whether modification of intracellular pH and/or preservation of high-energy phosphate levels during ischemia contributed to the cardioprotection in β-Tx hearts. No difference in intracellular pH or high-energy phosphate levels was found between the β-Tx and control hearts at baseline or during ischemia. Thus, long-term modest increase in PKC activity in adult mouse hearts did not alter baseline function but did lead to improved postischemic recovery. Furthermore, our results suggest that mechanisms other than reduced acidification and preservation of high-energy phosphate levels during ischemia contribute to the improved recovery.
Resumo:
The myristoylated alanine-rich C kinase substrate (MARCKS) is a prominent protein kinase C (PKC) substrate in brain that is expressed highly in hippocampal granule cells and their axons, the mossy fibers. Here, we examined hippocampal infrapyramidal mossy fiber (IP-MF) limb length and spatial learning in heterozygous Macs mutant mice that exhibit an ≈50% reduction in MARCKS expression relative to wild-type controls. On a 129B6(N3) background, the Macs mutation produced IP-MF hyperplasia, a significant increase in hippocampal PKCɛ expression, and proficient spatial learning relative to wild-type controls. However, wild-type 129B6(N3) mice exhibited phenotypic characteristics resembling inbred 129Sv mice, including IP-MF hypoplasia relative to inbred C57BL/6J mice and impaired spatial-reversal learning, suggesting a significant contribution of 129Sv background genes to wild-type and possibly mutant phenotypes. Indeed, when these mice were backcrossed with inbred C57BL/6J mice for nine generations to reduce 129Sv background genes, the Macs mutation did not effect IP-MF length or hippocampal PKCɛ expression and impaired spatial learning relative to wild-type controls, which now showed proficient spatial learning. Moreover, in a different strain (B6SJL(N1), the Macs mutation also produced a significant impairment in spatial learning that was reversed by transgenic expression of MARCKS. Collectively, these data indicate that the heterozygous Macs mutation modifies the expression of linked 129Sv gene(s), affecting hippocampal mossy fiber development and spatial learning performance, and that MARCKS plays a significant role in spatial learning processes.