898 resultados para Bridges in art.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume (this volume) summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume (this volume) provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume (this volume) introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This research deals with obstacles and opportunities with respect to creativity. It mainly focuses on the author's most meaningful discoveries as an individual and a professional in the field of theatre during the past two years of her education. The research is a description of that transitional phase in her life. Firstly, the research discusses creativity and presence. Secondly, it describes the author personally and professionally and compares her earlier and current ways of working. It contemplates the obstacles and opportunities considering her self-knowledge and creativity, and disucsses the problems she has faced on the way to freedom and well-being. Following this, the author presents the tools for increasing her creativity, self-knowledge and body awareness in theatre work: the Gestalt Method, Acting with the Inner Partner and the Authentic Movement. She discusses the relativity between overall well-being in life and the quality of theatre work. The final section of the present research discusses the process of directing the play Suurin on rakkaus in 2006. It deals with issues such as self-knowledge in directing, group management, the importance of terror and excitement in directing and ways of enduring both. The conclusion explanes the reasons behind the author's capability of working with small groups, with creative and passionate theatre workers. It also lists the benefits of exploring one's passions, cooperating with enthusiastic and creative artists and the pursuit for balance in art and in everyday life.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. Because many Iowa bridges require repair or replacement with a relatively limited funding base, there is a need to develop new bridge materials that may lead to longer life spans and reduced life-cycle costs. In addition, new and effective methods for determining the condition of structures are needed to identify when the useful life has expired or other maintenance is needed. Due to its unique alloy blend, high-performance steel (HPS) has been shown to have improved weldability, weathering capabilities, and fracture toughness than conventional structural steels. Since the development of HPS in the mid-1990s, numerous bridges using HPS girders have been constructed, and many have been economically built. The East 12th Street Bridge, which replaced a deteriorated box girder bridge, is Iowa’s first bridge constructed using HPS girders. The new structure is a two-span bridge that crosses I-235 in Des Moines, Iowa, providing one lane of traffic in each direction. A remote, continuous, fiber-optic based structural health monitoring (SHM) system for the bridge was developed using off-the-shelf technologies. In the system, sensors strategically located on the bridge collect raw strain data and then transfer the data via wireless communication to a gateway system at a nearby secure facility. The data are integrated and converted to text files before being uploaded automatically to a website that provides live strain data and a live video stream. A data storage/processing system at the Bridge Engineering Center in Ames, Iowa, permanently stores and processes the data files. Several processes are performed to check the overall system’s operation, eliminate temperature effects from the complete strain record, compute the global behavior of the bridge, and count strain cycles at the various sensor locations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of precast, prestressed concrete piles in the foundation of bridge piers has long been recognized as a valuable option for bridge owners and designers. However, the use of these precast, prestressed concrete piles in integral abutment bridges has not been widespread because of concerns over pile flexibility and the potential for concrete cracking and deterioration of the prestressing strands due to long-term exposure to moisture. This report presents the details of the first integral abutment bridge in the state of Iowa that utilized precast, prestressed concrete piles in the abutment. The bridge, which was constructed in Tama County in 2000, consists of a 110 ft. long, 30 ft. wide, single-span PC girder superstructure with a left-side-ahead 20º skew angle. The bridge was instrumented with a variety of strain gages, displacement sensors, and thermocouples to monitor and help in the assessment of structural behavior. The results of this monitoring are presented, and recommendations are made for future application of precast, prestressed concrete piles in integral abutment bridges. In addition to the structural monitoring data, this report presents the results of a survey questionnaire that had been mailed to each of the 50 state DOT chief bridge engineers to ascertain their current practices for precast, prestressed concrete piles and especially the application of these piles in integral abutment bridges.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Iowa Transportation Improvement Program (Program) is published to inform Iowans of planned investments in our state's transportation system. The Iowa Transportation Commission (Commission) and Iowa Department of Transportation (Iowa DOT) are committed to programming those investments in a fiscally responsible manner. Iowa's transportation system is multi-modal; therefore, the Program encompasses investments in aviation, transit, railroads, trails, and highways. A major component of the Program is the highway section. The FY2009-2013 highway section is financially balanced and was developed to achieve several objectives. The Commission's primary highway investment objective is the safety, maintenance and preservation of Iowa's existing highway system. The Commission has allocated an annual average of $321 million to achieve this objective. This includes $185 million in 2009 and $170 million annually in years 2010-2013 for preserving the interstate system. It includes $114 million in 2009, $100 million in 2010 and $90 million annually in years 2011-2013 for non-interstate pavement preservation. It includes $38 million annually in 2009 and 2010, and $35 million annually in years 2011-2013 for non-interstate bridges. In addition, $15 million annually is allocated for safety projects. However, due to increasing construction costs, flattened revenues and overall highway systems needs, the Commission acknowledges that insufficient funds are being invested in the maintenance and preservation of the existing highway system. Another objective involves investing in projects that have received funding from the federal transportation act and/or subsequent federal transportation appropriation acts. In particular, funding is being used where it will complete a project, corridor or useable segment of a larger project. As an investment goal, the Commission also wishes to advance highway projects that address the state's highway capacity and economic development needs. Projects that address these needs and were included for completion in the previous program have been advanced into this year's Program to maintain their scheduled completion. This program also includes a small number of other projects that generally either represent a final phase of a partially programmed project or an additional segment of a partially completed corridor. The TIME-21 bill, Senate File 2420, signed by Governor Chet Culver on April 22, provides additional funding to cities, counties and the Iowa DOT for road improvements. This will result in additional revenue to the Primary Road Fund beginning in the second half of FY2009 and gradually increase over time. The additional funding will be included in future highway programming objectives and proposals and is not reflected in this highway program. The Iowa DOT and Commission appreciate the public's involvement in the state's transportation planning process. Comments received personally, by letter, or through participation in the Commission's regular meetings or public input meetings held around the state each year are invaluable in providing guidance for the future of Iowa's transportation system. It should be noted that this document is a planning guide. It does not represent a binding commitment or obligation of the Commission or Iowa DOT, and is subject to change. You are invited to visit the Iowa DOT's Web site at iowadot.gov for additional and regular updates about the department's programs and activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent reports have indicated that 23.5 percent of the nation's highway bridges are structurally deficient and 17.7 percent are functionally obsolete. A significant number of these bridges are on the Iowa county road system. The objective of the investigation described in this report was to identify, review and evaluate replacement bridges currently being used by various counties in Iowa and surrounding states. Iowa county engineers, county engineers in neighboring states as well as private manufacturers of bridge components, and regional precad prestressed concrete manufacturers were contacted to determine the most common replacement bridge types being used. Depending upon the findings of the review, possible improvements and/or new replacement bridge systems were to be proposed. A questionnaire was developed and sent to county engineers in Iowa and several counties in surrounding states. The results of the questionnaire showed that the most common replacement bridges in Iowa are the continuous concrete slab and prestressed concrete bridges. The primary reason these types are used is because of the availability of standard designs and because of their ease of maintenance. Counties seldom construct these types of bridges using their own labor forces, but instead contract the work. However, county forces are used to construct steel stringer, precast reinforced concrete and timber bridges. In general, 69 percent of the counties indicate an ability and willingness to use their own forces to design and construct relatively short span bridges (i.e., 40 A or less) provided the construction procedures are relatively simple. Several unique replacement bridge types used in Iowa that are constructed by county forces are documented and presented in this report. Sufficient details are provided to allow county engineers to determine if some of these bridges could be used to resolve some of their own replacement bridge problems. Where possible, cost information has also been provided. Each of these bridge types were evaluated for various criteria (e.g., cost effectiveness, conformance to AASI-ITO standards, range of sizes, etc.) by a panel of four Iowa county engineers; a summary of this critique is included. After evaluating the questionnaire responses from the counties and evaluating the various bridge replacement concepts currently in use, one new bridge replacement concept and one modification of a current Iowa county bridge replacement concept were developed. Both of these concepts would utilize county labor forces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Debris accumulation on bridge piers is an on-going national problem that can obstruct the waterway openings at bridges and result in significant erosion of stream banks and scour at abutments and piers. In some cases, the accumulation of debris can adversely affect the operation of the waterway opening or cause failure of the structure. In addition, removal of debris accumulation is difficult, time consuming, and expensive for maintenance programs. This research involves a literature search of publications, products, and pier design recommendations that provide a cost effective method to mitigate debris accumulation at bridges. In addition, a nationwide survey was conducted to determine the state-of-the-practice and the results are presented within.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Asphalt wearing surfaces are commonly used on timber bridges with transverse glued-laminated deck panel systems to help protect the timber components. However, poor performance of these asphalt wearing surfaces in the past has resulted in repeated repair and increased maintenance costs. This report describes the field demonstration and testing of a newly-constructed, glued-laminated timber girder bridge. Previous field work revealed that differential panel deflections in the glued-laminated deck were one significant factor resulting in the premature failure of the asphalt wearing surfaces on these bridges. In addition, laboratory work subsequent to the field testing attempted to address the problematic asphalt cracking common in transverse glued-laminated panel decks by testing several deck joint connection alternatives. The field demonstration project described in this report showcases the retrofit detail that was determined to provide the best field performance. The project was a cooperative effort between the Bridge Engineering Center (BEC) at Iowa State University and the United States Department of Agriculture (USDA) Forest Service Forest Products Laboratory (FPL).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. This report documents one of three bridges inspected, load tested, and load rated as part of the project, the Sioux County Bridge (FHWA #308730), including testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. Two parallel reports document the testing and load rating of the Ida County Bridge (FHWA #186070) and the Johnson County Bridge (FHWA #205750). A tech brief provides overall information about the project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. This report documents one of three bridges inspected, load tested, and load rated as part of the project, the Ida County Bridge (FHWA #186070), including testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. Two parallel reports document the testing and load rating of the Sioux County Bridge (FHWA #308730) and the Johnson County Bridge (FHWA #205750). A tech brief provides overall information about the project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work, Pilot Project - Demonstration of Capabilities and Benefits of Bridge Load Rating through Physical Testing, was to demonstrate the capabilities for load testing and rating bridges in Iowa, study the economic benefit of performing such testing, and perform outreach to local, state, and national engineers on the topic of bridge load testing and rating. This report documents one of three bridges inspected, load tested, and load rated as part of the project, the Johnson County Bridge (FHWA #205750), including testing procedures and performance of the bridge under static loading along with the calculated load rating from the field-calibrated analytical model. Two parallel reports document the testing and load rating of the Sioux County Bridge (FHWA #308730) and the Ida County Bridge (FHWA #186070). A tech brief provides overall information about the project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This project demonstrated the capabilities for load testing bridges in Iowa, developed and presented a webinar to local and state engineers, and produced a spreadsheet and benefit evaluation matrix that others can use to preliminarily assess where bridge testing may be economically feasible given truck traffic and detour lengths.