949 resultados para Bridge whist.
Resumo:
Bridge weigh-in-motion (B-WIM), a system that uses strain sensors to calculate the weights of trucks passing on bridges overhead, requires accurate axle location and speed information for effective performance. The success of a B-WIM system is dependent upon the accuracy of the axle detection method. It is widely recognised that any form of axle detector on the road surface is not ideal for B-WIM applications as it can cause disruption to the traffic (Ojio & Yamada 2002; Zhao et al. 2005; Chatterjee et al. 2006). Sensors under the bridge, that is Nothing-on-Road (NOR) B-WIM, can perform axle detection via data acquisition systems which can detect a peak in strain as the axle passes. The method is often successful, although not all bridges are suitable for NOR B-WIM due to limitations of the system. Significant research has been carried out to further develop the method and the NOR algorithms, but beam-and-slab bridges with deep beams still present a challenge. With these bridges, the slabs are used for axle detection, but peaks in the slab strains are sensitive to the transverse position of wheels on the beam. This next generation B-WIM research project extends the current B-WIM algorithm to the problem of axle detection and safety, thus overcoming the existing limitations in current state-of–the-art technology. Finite Element Analysis was used to determine the critical locations for axle detecting sensors and the findings were then tested in the field. In this paper, alternative strategies for axle detection were determined using Finite Element analysis and the findings were then tested in the field. The site selected for testing was in Loughbrickland, Northern Ireland, along the A1 corridor connecting the two cities of Belfast and Dublin. The structure is on a central route through the island of Ireland and has a high traffic volume which made it an optimum location for the study. Another huge benefit of the chosen location was its close proximity to a nearby self-operated weigh station. To determine the accuracy of the proposed B-WIM system and develop a knowledge base of the traffic load on the structure, a pavement WIM system was also installed on the northbound lane on the approach to the structure. The bridge structure selected for this B-WIM research comprised of 27 pre-cast prestressed concrete Y4-beams, and a cast in-situ concrete deck. The structure, a newly constructed integral bridge, spans 19 m and has an angle of skew of 22.7°.
Resumo:
This paper investigates a low-cost wavelet-based approach for the preliminary monitoring of bridge structures, consisting of the use of a vehicle fitted with accelerometers on its axles. The approach aims to reduce the need for direct instrumentation of the bridge. A time-frequency analysis is carried out in order to identify the existence and location of damage from vehicle accelerations. Firstly, in theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach. A number of damage indicators are evaluated and compared. A range of parameters such as the bridge span, vehicle speed, damage level and location, signal noise and road roughness are varied in simulations. Secondly, a scaled laboratory experiment is carried out to validate the results of the theoretical analysis and assess the ability of the selected damage indicators to detect changes in the bridge response from vehicle accelerations.
Resumo:
Damage detection in bridges using vibration-based methods is an area of growing research interest. Improved assessment
methodologies combined with state-of-the-art sensor technology are rapidly making these approaches applicable for real-world
structures. Applying these techniques to the detection and monitoring of scour around bridge foundations has remained
challenging; however this area has gained attraction in recent years. Several authors have investigated a range of methods but
there is still significant work required to achieve a rounded and widely applicable methodology to detect and monitor scour.This
paper presents a novel Vehicle-Bridge-Soil Dynamic Interaction (VBSDI) model which can be used to simulate the effect of scour
on an integral bridge. The model outputs dynamic signals which can be analysed to determine modal parameters and the variation
of these parameters with respect to scour can be examined.The key novelty of this model is that it is the first numerical model for
simulating scour that combines a realistic vehicle loadingmodel with a robust foundation soil responsemodel.This paper provides a
description of the model development and explains the mathematical theory underlying themodel. Finally a case study application
of the model using typical bridge, soil, and vehicle properties is provided.
Resumo:
Bridge scour is the number one cause of failure in bridges located over waterways. Scour leads to rapid losses in foundation stiffness and can cause sudden collapse. Previous research on bridge health monitoring has used changes in natural frequency to identify damage in bridge beams. The possibility of using a similar approach to identifying scour is investigated in this paper. To assess if this approach is feasible, it is necessary to establish how scour affects the natural frequency of a bridge, and if it is possible to measure changes in frequency using the bridge dynamic response to a passing vehicle. To address these questions, a novel vehicle–bridge–soil interaction (VBSI) model was developed. By carrying out a modal study in this model, it is shown that for a wide range of possible soil states, there is a clear reduction in the natural frequency of the first mode of the bridge with scour. Moreover, it is shown that the response signals on the bridge from vehicular loading are sufficient to allow these changes in frequency to be detected.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Wando River S248 (Above Hwy 41 Bridge) Recreational Shellfish Ground in Charleston County.
Resumo:
Flavour effects due to lepton interactions in the early Universe may have played an important role in the generation of the cosmological baryon asymmetry through leptogenesis. If the only source of high-energy CP violation comes from the left-handed leptonic sector, then it is possible to establish a bridge between flavoured leptogenesis and low-energy leptonic CP violation. We explore this connection taking into account our present knowledge about low-energy neutrino parameters and the matter-antimatter asymmetry observed in the Universe. In this framework, we find that leptogenesis favours a hierarchical light neutrino mass spectrum, while for quasi-degenerate and inverted hierarchical neutrino masses there is a very narrow allowed window. The absolute neutrino mass scale turns out to be m less than or similar to 0.1 eV. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In the last years, several solutions have been proposed to extend PROFIBUS in order to support wired and wireless network stations in the same network. In this paper we compare two of those solutions, one in which the interconnection between wired and wireless stations is made by repeaters and another in which the interconnection is made by bridges. The comparison is both qualitative and numerical, based on simulation models of both architectures.
Resumo:
Use of bridge deck overlays is important in maximizing bridge service life. Overlays can replace the deteriorated part of the deck, thus extending the bridge life. Even though overlay construction avoids the construction of a whole new bridge deck, construction still takes significant time in re-opening the bridge to traffic. Current processes and practices are time-consuming and multiple opportunities may exist to reduce overall construction time by modifying construction requirements and/or materials utilized. Reducing the construction time could have an effect on reducing the socioeconomic costs associated with bridge deck rehabilitation and the inconvenience caused to travelers. This work included three major tasks with literature review, field investigation, and laboratory testing. Overlay concrete mix used for present construction takes long curing hours and therefore an investigation was carried out to find fast-curing concrete mixes that could reduce construction time. Several fast-cuing concrete mixes were found and suggested for further evaluation. An on-going overlay construction project was observed and documented. Through these observations, several opportunities were suggested where small modifications in the process could lead to significant time savings. With current standards of the removal depth of substrate concrete in Iowa, it takes long hours for the removal process. Four different laboratory tests were performed with different loading conditions to determine the necessary substrate concrete removal depth for a proper bond between the substrate concrete and the new overlay concrete. Several parameters, such as failure load, bond stress, and stiffness, were compared for four different concrete removal depths. Through the results and observations of this investigation several conclusions were made which could reduce bridge deck overlay construction time.
Resumo:
An artistic shot of a one lane bridge near Brock.
Resumo:
One of the so called enclosed bridges connecting modules of the Mackenzie Chown Complex.
Resumo:
Cover title: Illustrated guide to Niagara Falls and vicinity.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the canal in Thorold Township. Identified structures associated with the Canal include the towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include streets and roads(ex. Road to Allanburgh), Marlatt's Bridge, Marlatt's Culvert, Marlatt's Dwelling House, Willson's Dwelling House, Willson's Tannery, a flume, a bridge house, a covered drain, and a creek. Properties and property owners of note are: Lots 49, 50, and 51, Hiram Marlatt, Willson, John Kelley, and E. Hopkins.