895 resultados para Boron trifluoride.
Resumo:
Prompt gamma activation analysis (PGAA) is especially sensitive for elements with high neutron-capture cross sections, like boron, which can be detected down to a level of ng/g. However, if it is a major component, the high count rate from its signal will distort the spectra, making the evaluation difficult. A lead attenuator was introduced in front of the HPGe-detector to reduce low-energy gamma radiation and specifically the boron gamma rays reaching the detector, whose thickness was found to be optimal at 10 mm. Detection efficiencies with and without the lead attenuator were compared, and it was shown that the dynamic range of the PGAA technique was significantly increased. The method was verified with the analyses of stoichiometric compounds: TiB2, NiB, PVC, Alborex, and Alborite.
Resumo:
In 1884, Lorenzen proposed the formula MgAI2SiO6 for his new mineral kornerupine from Fiskenæsset and did not suspect it to contain boron. Lacroix and de Gramont (1919) reported boron in Fiskenæsset kornerupine, while Herd (1973) found none. New analyses (ion microprobe mass analyser and spectrophotometric) of kornerupine in three specimens from the type locality, including the specimens analysed by Lorenzen and Herd, indicate the presence of boron in all three, in amounts ranging from 0.50 to 1.44 wt.% B203, e.g. (Li0.04 Na0.01 Ca0.01) (Mg3.49 Mn0.01 Fe0.17 Ti0.01 Al5.64)Σ9.30 (Si3.67 Al1.02 B0.31)Σ5 O21 (OH0.99 F0.01) for Lorenzen's specimen. Textures and chemical compositions suggest that kornerupine crystallized in equilibrium in the following assemblages, all with anorthite (An 92-95) and phlogopite (XFe = atomic Fe/(Fe + Mg) = 0.028-0.035): (1) kornerupine (0.045)-gedrite (0.067); (2) kornerupine (0.038-0.050)-sapphirine (0.032-0.035); and (3) kornerupine (0.050)-hornblende. Fluorine contents of kornerupine range from 0.01 to 0.06%, of phlogopite, from 0.09 to 0.10%. In the first assemblage, sapphirine (0.040) and corundum are enclosed in radiating bundles of kornerupine; additionally sapphirine, corundum, and/or gedrite occur with chlorite and pinite (cordierite?) as breakdown products of kornerupine. Kornerupine may have formed by reactions such as: gedrite + sapphirine + corundum + B203 (in solution) + H20 = kornerupine + anorthite + Na-phlogopite under conditions of the granulite facies. Boron for kornerupine formation was most likely remobilized by hydrous fluids from metasedimentary rocks occurring along the upper contact of the Fiskenæsset gabbro-anorthosite complex with amphibolite.
Resumo:
Kornerupine and prismatine were introduced independently by Lorenzen in 1884 (but published in 1886 and 1893) and by Sauer in 1886, respectively. Ussing (1889) showed that the two minerals were sufficiently close crystallographically and chemically to be regarded as one species. However, recent analyses of boron using the ion microprobe and crystal structure refinement, indicate that the boron content of one tetrahedral site in kornerupine ranges from 0 to 1. Kornerupine and prismatine, from their respective type localities of Fiskenaesset, Greenland and Waldheim, Germany, are distinct minerals, members of an isomorphic series differing in boron content. For this reason, we re-introduce Sauer's name prismatine for kornerupines with B > 0.5 atoms per formula unit (p.f.u.) of 22(O,OH,F), and restrict the name kornerupine sensu stricto to kornerupines with B < 0.5 p.f.u. Kornerupine sensu lato is an appropriate group name for kornerupine of unknown boron content. Kornerupine sensu stricto and prismatine from the type localities differ also in Fe2+/Mg ratio, Si - (Mg + Fe2+ + Mn) content, Al content, F content, colour, density, cell parameters, and paragenesis. Both minerals formed under granulite-facies conditions with sapphirine and phlogopite, but kornerupine sensu stricto is associated with anorthite and homblende or gedrite, whereas prismatine is found with oligoclase (An9-13), sillimanite, garnet, and/or tourmaline. Occurrences at other localities suggest that increasing boron content extends the stability range of prismatine relative to that of kornerupine sensu stricto.
Resumo:
Historically, sulfur (S) deficiency has not been an issue for crop production in Iowa. Research results as recent as 2002 on corn and soybeans were consistent with previous results. The exception was a long-standing suggestion to apply S as commercial fertilizer or livestock manure for alfalfa production on sandy soils.
Resumo:
This trial was conducted to investigate how potatoes respond to boron and sulfur fertilization when grown on coarse sand soil with low organic matter.
Resumo:
delta11B results and deduced pH, pCO2 and omega values obtained for a tropical coral specimen Porites collected in 1998 at Yasawa (16°48'S- 177°27'E) on the western side of the Fiji archipelago, location in the north western part of the Pacific Warm Pool. Such Porites specimen grew during the XXth century (1898-1998). Boron isotopes results allowed the reconstruction of surface ocean acidification in the vincinity of Fiji Islands with strong interdecadal influence of the ENSO at regional scale. pHT calculation parameters (Hönisch et al., 2007): a=0 PER MIL; alpha=0.9804; delta11B=39.5 PER MIL; salinity=35.02; pKB from Dickson (1990). pCO2 and omega calculation parameters: TA= 2350 µM; Ca= 10.2 mM; Dickson et al.(2007); Mucci 1983.
Resumo:
Knowledge of the evolution of atmospheric carbon dioxide concentrations throughout the Earth's history is important for a reconstruction of the links between climate and radiative forcing of the Earth's surface temperatures. Although atmospheric carbon dioxide concentrations in the early Cenozoic era (about 60 Myr ago) are widely believed to have been higher than at present, there is disagreement regarding the exact carbon dioxide levels, the timing of the decline and the mechanisms that are most important for the control of CO2 concentrations over geological timescales. Here we use the boron-isotope ratios of ancient planktonic foraminifer shells to estimate the pH of surface-layer sea water throughout the past 60 million years, which can be used to reconstruct atmospheric CO2 concentrations. We estimate CO2 concentrations of more than 2,000 p.p.m. for the late Palaeocene and earliest Eocene periods (from about 60 to 52 Myr ago), and find an erratic decline between 55 and 40 Myr ago that may have been caused by reduced CO2 outgassing from ocean ridges, volcanoes and metamorphic belts and increased carbon burial. Since the early Miocene (about 24 Myr ago), atmospheric CO2 concentrations appear to have remained below 500 p.p.m. and were more stable than before, although transient intervals of CO2 reduction may have occurred during periods of rapid cooling approximately 15 and 3 Myr ago.
Resumo:
A marked ocean acidification event and elevated atmospheric carbon dioxide concentrations following the extreme environmental conditions of the younger Cryogenian glaciation have been inferred from boron isotope measurements. Calcium and magnesium isotope analyses offer additional insights into the processes occurring during this time. Data from Neoproterozoic sections in Namibia indicate that following the end of glaciation the continental weathering flux transitioned from being of mixed carbonate and silicate character to a silicate-dominated one. Combined with the effects of primary dolomite formation in the cap dolostones, this caused the ocean to depart from a state of acidification and return to higher pH after climatic amelioration. Differences in the magnitude of stratigraphic isotopic changes across the continental margin of the southern Congo craton shelf point to local influences modifying and amplifying the global signal, which need to be considered in order to avoid overestimation of the worldwide chemical weathering flux.
Resumo:
The influence of fluid flux on petrogenesis in the Tonga-Kermadec Arc was investigated using ion microprobe measurements of B/Be and boron isotope ratios (11B/10B) to document the source and relative volumes of the fluids released from the subducting oceanic plate. We analyzed young lavas from eight different islands along the Tonga-Kermadec Arc, as well as glass shards in volcanic sediments from Ocean Drilling Program (ODP) Site 840, which record the variations in the chemistry of Tonga magmatism since 7 Ma. B/Be is variable (5.8-122), in young Tonga-Kermadec Arc lavas. In contrast, glass shards from around 3 to 4 Ma old volcanic sediments at Site 840 have the highest B/Be values yet reported for arc lavas (18-607). These values are too high to be related simply to a sediment influence on petrogenesis. Together with very high d11B values (-11.6 to +37.5) for the same shards and lavas these data indicate that most of the B is derived from fluid escaped from the subducting altered Pacific oceanic crust, rather than from sediment. High d11B values also reflect large degrees of isotopic fractionation in this cold fast subduction zone. Lower d11B values noted in the Kermadec Arc (17 to -4.4) are related to the influence of sediment eroded from New Zealand and slower convergence. High fluid flux (B/Be) is synchronous in Tonga and the Marianas at 3 to 4 Ma and may be related to acceleration of the Pacific Plate just prior to this time. The timing of maximum B/Be at 3 to 4 Ma correlates with maximum light rare earth (LREE) and high field strength element depletion. This suggests maximum degrees of partial melting at this time. Although thinning of the arc lithosphere during rifting to form the Lau Basin is expected to influence the arc geochemistry, variable aqueous fluid flux from the subducting plate alone appears capable of explaining boron and other trace element systematics in the Tonga-Kermadec Arc with no indication of slab melting.
Resumo:
Iodine and boron were analyzed in pore fluids, serpentinized ultramafic clasts, and the serpentinized mud matrix of the South Chamorro Seamount mud volcano (Ocean Drilling Program Leg 195 Site 1200) to determine the distribution of these elements in deep forearc settings. Similar analyses of clasts and muds from the Conical Seamount mud volcano (Leg 125 Site 779) were also carried out. Interstitial pore fluids are enriched in boron and iodine without appreciable change in chloride concentration relative to seawater. Both the ultramafic clasts and the associated serpentinized mud present the highest documented iodine concentrations for all types of nonsedimentary rocks (6.3-101.7 µmol/kg). Such high iodine concentrations, if commonplace in marine forearc settings, may constitute a significant, previously unknown reservoir of iodine. This serpentinized forearc mantle reservoir may potentially contribute to the total crustal iodine budget and provide a mechanism for its recycling at convergent plate margins. Both clasts and mud show concurrent enrichments in boron and iodine, and the similarity in pore fluid profiles also suggests that these two incompatible, fluid-mobile elements behave similarly at convergent plate margins.