878 resultados para Bone fracture healing
Resumo:
OBJECTIVE Crohn's disease is a chronic inflammatory process that has recently been associated with a higher risk of early implant failure. Herein we provide information on the impact of colitis on peri-implant bone formation using preclinical models of chemically induced colitis. METHODS Colitis was induced by intrarectal instillation of 2,4,6-trinitro-benzene-sulfonic-acid (TNBS). Colitis was also induced by feeding rats dextran-sodium-sulfate (DSS) in drinking water. One week after disease induction, titanium miniscrews were inserted into the tibia. Four weeks after implantation, peri-implant bone volume per tissue volume (BV/TV) and bone-to-implant contacts (BIC) were determined by histomorphometric analysis. RESULTS Cortical histomorphometric parameters were similar in the control (n = 10), DSS (n = 10) and TNBS (n = 8) groups. Cortical BV/TV was 92.2 ± 3.7%, 92.0 ± 3.0% and 92.6 ± 2.7%. Cortical BIC was 81.3 ± 8.8%, 83.2 ± 8.4% and 84.0 ± 7.0%, respectively. No significant differences were observed when comparing the medullary BV/TV and BIC (19.5 ± 6.4%, 16.2 ± 5.6% and 15.4 ± 9.0%) and (48.8 ± 12.9%, 49.2 ± 6.2 and 41.9 ± 11.7%), respectively. Successful induction of colitis was confirmed by loss of body weight and colon morphology. CONCLUSIONS The results suggest bone regeneration around implants is not impaired in chemically induced colitis models. Considering that Crohn's disease can affect any part of the gastrointestinal tract including the mouth, our model only partially reflects the clinical situation.
Resumo:
BACKGROUND Regenerative periodontal surgery using the combination of enamel matrix derivative (EMD) and natural bone mineral (NBM) with and without addition of platelet-rich plasma (PRP) has been shown to result in substantial clinical improvements, but the long-term effects of this combination are unknown. METHODS The goal of this study was to evaluate the long-term (5-year) outcomes after regenerative surgery of deep intrabony defects with either EMD + NBM + PRP or EMD + NBM. Twenty-four patients were included. In each patient, one intrabony defect was randomly treated with either EMD + NBM + PRP or EMD + NBM. Clinical parameters were evaluated at baseline and 1 and 5 years after treatment. The primary outcome variable was clinical attachment level (CAL). RESULTS The sites treated with EMD + NBM + PRP demonstrated a mean CAL change from 10.5 ± 1.6 to 6.0 ± 1.7 mm (P <0.001) at 1 year and 6.2 ± 1.5 mm (P <0.001) at 5 years. EMD + NBM-treated defects showed a mean CAL change from 10.6 ± 1.7 to 6.1 ± 1.5 mm (P <0.001) at 1 year and 6.3 ± 1.4 mm (P <0.001) at 5 years. At 1 year, a CAL gain of ≥4 mm was measured in 83% (10 of 12) of the defects treated with EMD + NBM + PRP and in 100% (all 12) of the defects treated with EMD + NBM. Compared to baseline, in both groups at 5 years, a CAL gain of ≥4 mm was measured in 75% (nine of 12 in each group) of the defects. Four sites in the EMD + PRP + NBM group lost 1 mm of the CAL gained at 1 year. In the EMD + NBM group, one defect lost 2 mm and four other defects lost 1 mm of the CAL gained at 1 year. No statistically significant differences in any of the investigated parameters were observed between the two groups. CONCLUSIONS Within their limits, the present results indicate that: 1) the clinical outcomes obtained with both treatments can be maintained up to a period of 5 years; and 2) the use of PRP does not appear to improve the results obtained with EMD + NBM.
Resumo:
OBJECTIVE To evaluate the suitability of a minipig model for the study of bone healing and osseointegration of dental implants following bone splitting and expansion of narrow ridges. MATERIAL AND METHODS In four minipigs, the mandibular premolars and first molars were extracted together with removal of the buccal bone plate. Three months later, ridge splitting and expansion was performed with simultaneous placement of three titanium implants per quadrant. On one side of the mandible, the expanded bone gap between the implants was filled with an alloplastic biphasic calcium phosphate (BCP) material, while the gap on the other side was left unfilled. A barrier membrane was placed in half of the quadrants. After a healing period of 6 weeks, the animals were sacrificed for histological evaluation. RESULTS In all groups, no bone fractures occurred, no implants were lost, all 24 implants were osseointegrated, and the gap created by bone splitting was filled with new bone, irrespective of whether BCP or a barrier membrane was used. Slight exposure of five implants was observed, but did not lead to implant loss. The level of the most coronal bone-to-implant contact varied without being dependent on the use of BCP or a barrier membrane. In all groups, the BCP particles were not present deep in the bone-filled gap. However, BCP particles were seen at the crestal bone margin, where they were partly integrated in the new bone. CONCLUSIONS This new minipig model holds great promise for studying experimental ridge splitting/expansion. However, efforts must be undertaken to reduce implant exposure and buccal bone resorption.
Resumo:
The individual healing profile of a given bone substitute with respect to osteogenic potential and substitution rate must be considered when selecting adjunctive grafting materials for bone regeneration procedures. In this study, standardized mandibular defects in minipigs were filled with nanocrystalline hydroxyapatite (HA-SiO), deproteinized bovine bone mineral (DBBM), biphasic calcium phosphate (BCP) with a 60/40% HA/β-TCP (BCP 60/40) ratio, or particulate autogenous bone (A) for histological and histomorphometric analysis. At 2 weeks, percent filler amongst the test groups (DBBM (35.65%), HA-SiO (34.47%), followed by BCP 60/40 (23.64%)) was significantly higher than the more rapidly substituted autogenous bone (17.1%). Autogenous bone yielded significantly more new bone (21.81%) over all test groups (4.91%-7.74%) and significantly more osteoid (5.53%) than BCP 60/40 (3%) and DBBM (2.25%). At 8 weeks, percent filler amongst the test groups (DBBM (31.6%), HA-SiO (31.23%), followed by BCP 60/40 (23.65%)) demonstrated a similar pattern and was again significantly higher as compared to autogenous bone (9.29%). Autogenous bone again exhibited statistically significantly greater new bone (55.13%) over HA-SiO (40.62%), BCP 60/40 (40.21%), and DBBM (36.35%). These results suggest that the osteogenic potential of HA-SiO and BCP is inferior when compared to autogenous bone. However, in instances where a low substitution rate is desired to maintain the volume stability of augmented sites, particularly in the esthetic zone, HA-SiO and DBBM may be favored. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B: 1478-1487, 2015.
Resumo:
PURPOSE To determine the predictive value of the vertebral trabecular bone score (TBS) alone or in addition to bone mineral density (BMD) with regard to fracture risk. METHODS Retrospective analysis of the relative contribution of BMD [measured at the femoral neck (FN), total hip (TH), and lumbar spine (LS)] and TBS with regard to the risk of incident clinical fractures in a representative cohort of elderly post-menopausal women previously participating in the Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk study. RESULTS Complete datasets were available for 556 of 701 women (79 %). Mean age 76.1 years, LS BMD 0.863 g/cm(2), and TBS 1.195. LS BMD and LS TBS were moderately correlated (r (2) = 0.25). After a mean of 2.7 ± 0.8 years of follow-up, the incidence of fragility fractures was 9.4 %. Age- and BMI-adjusted hazard ratios per standard deviation decrease (95 % confidence intervals) were 1.58 (1.16-2.16), 1.77 (1.31-2.39), and 1.59 (1.21-2.09) for LS, FN, and TH BMD, respectively, and 2.01 (1.54-2.63) for TBS. Whereas 58 and 60 % of fragility fractures occurred in women with BMD T score ≤-2.5 and a TBS <1.150, respectively, combining these two thresholds identified 77 % of all women with an osteoporotic fracture. CONCLUSIONS Lumbar spine TBS alone or in combination with BMD predicted incident clinical fracture risk in a representative population-based sample of elderly post-menopausal women.
Resumo:
Limited data exist on the efficacy of long-term therapies for osteoporosis. In osteoporotic postmenopausal women receiving denosumab for 7 years, nonvertebral fracture rates significantly decreased in years 4-7 versus years 1-3. This is the first demonstration of a further benefit on fracture outcomes with long-term therapy for osteoporosis. INTRODUCTION This study aimed to evaluate whether denosumab treatment continued beyond 3 years is associated with a further reduction in nonvertebral fracture rates. METHODS Participants who completed the 3-year placebo-controlled Fracture REduction Evaluation of Denosumab in Osteoporosis every 6 Months (FREEDOM) study were invited to participate in an open-label extension. The present analysis includes 4,074 postmenopausal women with osteoporosis (n = 2,343 long-term; n = 1,731 cross-over) who enrolled in the extension, missed ≤1 dose during their first 3 years of denosumab treatment, and continued into the fourth year of treatment. Comparison of nonvertebral fracture rates during years 1-3 of denosumab with that of the fourth year and with the rate during years 4-7 was evaluated. RESULTS For the combined group, the nonvertebral fracture rate per 100 participant-years was 2.15 for the first 3 years of denosumab treatment (referent) and 1.36 in the fourth year (rate ratio [RR] = 0.64; 95 % confidence interval (CI) = 0.48 to 0.85, p = 0.003). Comparable findings were observed in the groups separately and when nonvertebral fracture rates during years 1-3 were compared to years 4-7 in the long-term group (RR = 0.79; 95 % CI = 0.62 to 1.00, p = 0.046). Fracture rate reductions in year 4 were most prominent in subjects with persisting low hip bone mineral density (BMD). CONCLUSIONS Denosumab treatment beyond 3 years was associated with a further reduction in nonvertebral fracture rate that persisted through 7 years of continuous denosumab administration. The degree to which denosumab further reduces nonvertebral fracture risk appears influenced by the hip bone density achieved with initial therapy.
Resumo:
Trabecular bone score (TBS) is a grey-level textural index of bone microarchitecture derived from lumbar spine dual-energy X-ray absorptiometry (DXA) images. TBS is a BMD-independent predictor of fracture risk. The objective of this meta-analysis was to determine whether TBS predicted fracture risk independently of FRAX probability and to examine their combined performance by adjusting the FRAX probability for TBS. We utilized individual level data from 17,809 men and women in 14 prospective population-based cohorts. Baseline evaluation included TBS and the FRAX risk variables and outcomes during follow up (mean 6.7 years) comprised major osteoporotic fractures. The association between TBS, FRAX probabilities and the risk of fracture was examined using an extension of the Poisson regression model in each cohort and for each sex and expressed as the gradient of risk (GR; hazard ratio per 1SD change in risk variable in direction of increased risk). FRAX probabilities were adjusted for TBS using an adjustment factor derived from an independent cohort (the Manitoba Bone Density Cohort). Overall, the GR of TBS for major osteoporotic fracture was 1.44 (95% CI: 1.35-1.53) when adjusted for age and time since baseline and was similar in men and women (p > 0.10). When additionally adjusted for FRAX 10-year probability of major osteoporotic fracture, TBS remained a significant, independent predictor for fracture (GR 1.32, 95%CI: 1.24-1.41). The adjustment of FRAX probability for TBS resulted in a small increase in the GR (1.76, 95%CI: 1.65, 1.87 vs. 1.70, 95%CI: 1.60-1.81). A smaller change in GR for hip fracture was observed (FRAX hip fracture probability GR 2.25 vs. 2.22). TBS is a significant predictor of fracture risk independently of FRAX. The findings support the use of TBS as a potential adjustment for FRAX probability, though the impact of the adjustment remains to be determined in the context of clinical assessment guidelines. This article is protected by copyright. All rights reserved.
Resumo:
Transglutaminases (TGs) stabilize proteins by the formation of ε(γ-glutamyl)lysine cross-links. Here, we demonstrate that the cross-linking of collagen I (COL I) by tissue transglutaminase (TG2) causes an alteration in the morphology and rheological properties of the collagen fibers. Human osteoblasts (HOB) attach, spread, proliferate, differentiate and mineralize more rapidly on this cross-linked matrix compared to native collagen. When seeded on cross-linked COL I, HOB are more resistant to the loss of cell spreading by incubation with RGD containing peptides and with α1, α2 and β1 integrin blocking antibodies. Following adhesion on cross-linked collagen, HOB show increased phosphorylation of the focal adhesion kinase, and increased expression of β1 and β3 integrins. Addition of human bone morphogenetic protein to HOB seeded on TG2 cross-linked COL I enhanced the expression of the differentiation marker bone alkaline phosphatase when compared to cross-linked collagen alone. In summary, the use of TG2-modified COL I provides a promising new scaffold for promoting bone healing. © 2014 Springer-Verlag.
Resumo:
Objective: To describe the prolonged rehabilitation program for a Jones fracture in a Division I-A American football player. Background: A 21 year old, African American, collegiate football player (body mass= 264 lb; height= 76.5 in; body fat= 16.0%) complained of a sharp pain at the dorsal aspect of the left foot. The athlete experiences a compressive force to the fifth metatarsal and upon evaluation, mild swelling was present along the lateral aspect of the foot. Differential Diagnosis: Jones fracture, metatarsal fracture, bone contusion. Treatment: An intramedullary fixation surgery was scheduled two weeks post injury, to correct and stabilize the fracture. Intramedullary fixation is a method of mending the bone internally with a screw, wire, or metal plate along the fractured bone length wise. Following surgery the athlete continued use of crutches for ambulation and was placed in a removable walking boot for 5 weeks. Uniqueness: This case presented a unique challenge in the rehabilitation program, as the athlete experienced slow formation of the bone callus and therefore a prolonged rate of recovery. The athlete was in a walking boot longer than expected (2 weeks longer than anticipated) which inhibited advancement in his rehabilitation due to a slow bone callus formation. A soft callus usually begins to form at day 5 following injury, but documentation was incomplete, and a hypothesis for slow bone callus formation could be secondary to lengthened time between injury occurrence and injury reporting. The athlete may have been weight bearing during the early callus formation, but healing may have been prohibited. Also, vascularization in the area is already limited and may also have played a role in delayed bone growth. Conclusions: Although the return to participation was longer than expected, the rehabilitation program was successful in returning the athlete to competition.
Resumo:
La sostituzione totale d’anca è uno degli interventi chirurgici con le più alte percentuali di successo. Esistono due varianti di protesi d’anca che differiscono in base al metodo di ancoraggio all’osso: cementate (fissaggio tramite cemento osseo) e non cementate (fissaggio tramite forzamento). Ad oggi, i chirurghi non hanno indicazioni quantitative di supporto per la scelta fra le due tipologie di impianto, decidendo solo in base alla loro esperienza. Due delle problematiche che interessano le protesi non cementate sono la possibilità di frattura intra-operatoria durante l’inserimento forzato e il riassorbimento osseo nel periodo di tempo successivo all’intervento. A partire da rilevazioni densitometriche effettuate su immagini da TC di pazienti sottoposti a protesi d’anca non cementata, sono stati sviluppati due metodi: 1) per la valutazione del rischio di frattura intra-operatorio tramite analisi agli elementi finiti; 2) per la valutazione della variazione di densità minerale ossea (tridimensionalmente attorno alla protesi) dopo un anno dall’operazione. Un campione di 5 pazienti è stato selezionato per testare le procedure. Ciascuno dei pazienti è stato scansionato tramite TC in tre momenti differenti: una acquisita prima dell’operazione (pre-op), le altre due acquisite 24 ore (post 24h) e 1 anno dopo l’operazione (post 1y). I risultati ottenuti hanno confermato la fattibilità di entrambi i metodi, riuscendo inoltre a distinguere e a quantificare delle differenze fra i vari pazienti. La fattibilità di entrambe le metodologie suggerisce la loro possibilità di impiego in ambito clinico: 1) conoscere la stima del rischio di frattura intra-operatorio può servire come strumento di guida per il chirurgo nella scelta dell’impianto protesico ottimale; 2) conoscere la variazione di densità minerale ossea dopo un anno dall’operazione può essere utilizzato come strumento di monitoraggio post-operatorio del paziente.
Resumo:
2016
Resumo:
Bone graft is generally considered fundamental in achieving solid fusion in scoliosis correction and pseudarthrosis following instrumentation may predispose to implant failure. In endoscopic anterior-instrumented scoliosis surgery, autologous rib or iliac crest graft has been utilised traditionally but both techniques increase operative duration and cause donor site morbidity. Allograft bone and bone- morphogenetic-protein alternatives may improve fusion rates but this remains controversial. This study's objective was to compare two-year postoperative fusion rates in a series of patients who underwent endoscopic anterior instrumentation for thoracic scoliosis utilising various bone graft types. Significantly better rates of fusion occurred in endoscopic anterior instrumented scoliosis correction using femoral allograft compared to autologous rib-heads and iliac crest graft. This may be partly explained by the difficulty obtaining sufficient quantities of autologous graft. Lower fusion rates in the autologous graft group appeared to predispose to rod fracture although the clinical consequence of implant failure is uncertain.
Resumo:
Bone morphogenetic proteins (BMPs) have been widely investigated for their clinical use in bone repair and it is known that a suitable carrier matrix to deliver them is essential for optimal bone regeneration within a specific defect site. Fused deposited modeling (FDM) allows for the fabrication of medical grade poly 3-caprolactone/tricalcium phosphate (mPCL–TCP) scaffolds with high reproducibility and tailor designed dimensions. Here we loaded FDM fabricated mPCL–TCP/collagen scaffolds with 5 mg recombinant human (rh)BMP-2 and evaluated bone healing within a rat calvarial critical-sized defect. Using a comprehensive approach, this study assessed the newly regenerated bone employing microcomputed tomography (mCT), histology/histomorphometry, and mechanical assessments. By 15 weeks, mPCL–TCP/collagen/rhBMP-2 defects exhibited complete healing of the calvarium whereas the non- BMP-2-loaded scaffolds showed significant less bone ingrowth, as confirmed by mCT. Histomorphometry revealed significantly increased bone healing amongst the rhBMP-2 groups compared to non-treated scaffolds at 4 and 15 weeks, although the % BV/TV did not indicate complete mineralisation of the entire defect site. Hence, our study confirms that it is important to combine microCt and histomorphometry to be able to study bone regeneration comprehensively in 3D. A significant up-regulation of the osteogenic proteins, type I collagen and osteocalcin, was evident at both time points in rhBMP-2 groups. Although mineral apposition rates at 15 weeks were statistically equivalent amongst treatment groups, microcompression and push-out strengths indicated superior bone quality at 15 weeks for defects treated with mPCL–TCP/collagen/rhBMP-2. Consistently over all modalities, the progression of healing was from empty defect < mPCL–TCP/collagen < mPCL–TCP/collagen/rhBMP-2, providing substantiating data to support the hypothesis that the release of rhBMP-2 from FDM-created mPCL–TCP/collagen scaffolds is a clinically relevant approach to repair and regenerate critically-sized craniofacial bone defects. Crown Copyright 2008 Published by Elsevier Ltd. All rights reserved.