972 resultados para Blackburn, J. K. P. (James Knox Polk), 1837-1923.
Resumo:
microwave dielectric properties of ceramics based on Ba(Mgv3Ta(2-2x)t3W,t3Tixt3)O3 is investigated as a function of x. The 15 densification as well as dielectric properties deteriorate with increase in the substitution levels of (Ti 1,3W113)333 + at (Ta213)3.33+ site 16 in Ba(Mg113Ta213)03. The rt is approaching zero between x = 0.1 and 0.15 in Ba(Mg it3Ta(2-2,,.)t3W,it3Ti,Tt3)O3 where quality factor is 17 reasonably good (Qu x f = 80,000-90,000 GHz). The Ba(Mg1,3Ta(2_,013W,13Ti,,13)03 with x = 1.0 has e, = 15.4, rf= -25.1 ppm/ 18 "C, Q„ x f = 35,400 GHz
Resumo:
The effect of dopants with different valencies and ionic radii on the densification, structural ordering, and microwave dielectric properties of Ba(Mg1t3Tazt3)O3 (BMT) is investigated. It is found that dopants such as Sb,05, MnO, ZrO,, WO1, and ZnO improve the microwave dielectric properties of BMT. Addition of trivalent dopants is detrimental to the cation ordering and dielectric properties of BMT. A correlation between the microwave dielectric properties of BMT and ionic radii of the dopant has been established. The variation of the dielectric properties of pure and doped BMT at cryogenic temperatures is also discussed
Resumo:
The microwave dielectric properties of ZnAl2O4 spinels were investigated and their properties were tailored by adding different mole fractions of Ti02. The samples were synthesized using the mixed oxide rout.e. The phase purity and crystal structure were identified using X-ray diffraction technique. The sintered specimens were characterized in the microwave frequency range (3-13 GHz). The ZnA12O4 ceramics exhibited interesting dielectric properties (dielectric constant (e,.) = 8.5, unloaded quality factor (Q.) = 4590 at 12.27 GHz and temperature coefficient of resonant frequency (Tf) = -79 ppm/°C). Addition of Ti02 into the spinel improved its properties and the Tf approached zero for 0.83ZnAl2O4- 0.17TiO2• This temperature compensated composition has excellent microwave dielectric properties (Cr _ 12.67, Q, = 9950 at 10.075 GHz) which can be exploited for microwave substrate applications
Resumo:
The effect of glass additives on the densification , phase evolution, microstructure and microwave dielectric properties of Ba(Mg1;3 Ta2i3)03 (BMT) was investigated . Different weight percentages of quenched glass such as B203 , Si02, B203-SiO2, ZnO-B203, 5ZnO-2B2O3, Al203-SiO2, Na20-2B203.10H20, BaO-B203-SiO2, MgO-B203-SiO2, PbO-B203-SiO2 , ZnO-B203-SiO2 and 2MgO-Al203-5SiO2 were added to calcined BMT precursor . The sintering temperature of the glass -added BMT samples were lowered down to 1300 °C compared to solid-state sintering where the temperature was 1650 °C. The formation of high temperature satellite phases such as Ba5Ta4O15 and Ba7Ta6O22 were found to be suppressed by the glass addition . Addition of glass systems such as B203, ZnO-B203, 5ZnO-2B203 and ZnO-B203-SiO2 improved the densification and microwave dielectric properties. Other glasses were found to react with BMT to form low-Q phases which prevented densification . The microwave dielectric properties of undoped BMT with a densification of 93 . 1 % of the theoretical density were Cr = 24 . 8, Tr = 8 ppm/°C and Q„ x f= 80,000 GHz. The BMT doped with 1.0 wt% of B203 has Q„ x f = 124,700GHz, Cr = 24.2, and T f = -1.3 ppm /°C. The unloaded Q factor of 0.2 wt% ZnO-B203-doped BMT was 136,500 GHz while that of 1.0 wt% of 5ZnO-2B203 added ceramic was Q„ x f= 141,800 GHz . The best microwave quality factor was observed for ZnO -B203-SiO2 (ZBS) glass-added ceramics which can act as a perfect liquid-phase medium for the sintering of BMT. The microwave dielectric properties of 0.2wt% ZBS-added BMT dielectric was Q„ x f= 152,800 GHz, F,= 25.5, and Tr = - 1.5 ppm/°C
Resumo:
Two simple and sensitive spectrophotometric methods (A and B)in the visible region have been developed for the determination of nimesulide in bulk and in dosage forms.Method A is based on the reaction of reduced nimesulide with nitrous acid followed by its coupling with phloroglucinol to yield an yellow colored azo dye with an absorption maximum of 400 nm and method B is based on the reaction of reduced nimesulide with p-dimethylamino benzaldehyde(PDAB) to form an yellow colored chromogen wiht an absorption maximum of 415 nm.When pharmaceutical preparations (Tablets and suspension) were analysed, the results obtained by the proposed methods are in good agreement with the labelled amounts and are comparable with the results obtained by a reported method.recovery in both the method is 98-101 %.