954 resultados para Biopolymers and renewable polymers
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
One of society concerns are preserving the environment and the growing energy demand. These two issues are in conflict since most of the energy used today in some way harms the environment. Then is essential to develop and implement ways to clean and renewable energy. In this way, solar energy stands out as a source of clean energy, renewable, abundant and acessible. Solar energy can be harnessed by photovoltaic cells or by solar collectors. The aim of this article is analysethe yield of the solar heather assembled with hydraulic conductive and plastic bottles using three different materials for hydraulic conductors, in order to compare these efficiences and analyze material which has the best cost-benefit in this type of application. The materials analyzed in this study were copper, aluminum and PVC. For this analysis were assembled three alike solar heaters using each one of these materials, and were done several series of measurements of the temperature water output to each heat with flow between 10 and 30 liters per hour. With these data we can analyze the yield and the performance of copper, aluminum and PVC in this application. So we can conclude that aluminum has a higher efficiency, followed by PVC, and the copper had the lowest efficiency. This behavior kept for all values of flow rates examined
Resumo:
The current world's need for clean and renewable energy sources aligned with the strong Brazilian growth looking to diversify its electric power generation sources, highly dependent on hydropower and petroleum encourages the implementation of technologies that reach this growth with diversity and cleaning. The sun energy source is considered inexhaustible and can meet the demand for energy through thermo solar plants to generate electricity. Several technologies are being studied and developed in the world and they can be used to generate electricity from the solar concentration, but in Brazil its use is still not found commercially. It is therefore essential to understand these technologies and develop knowledge about them so they can be implemented in Brazil. This work brings an overview of the thermo solar generation in Brazil, showing the different technologies and a thermodynamic simulation of one of such technologies considering a hybrid plant with complementary generation biomass, aiming at the generation of 1 MW in the Brazilian Northeast
Resumo:
The uninterrupted rise in emission of greenhouse gases open way to the use of biofuels, due to politics that focus on fuel safe, clean and renewable. The use of microalgae for biodiesel production has been described as one of the most promising sources of biomass for biofuels. The aim of this study was to evaluate the extraction and lipid profile of the microalgae Dunaliella tertiolecta, Isochrysis galbana and Tetraselsim gracilis. The extractions were performed with solvents chloroform /methanol and petroleum ether. The lipid profile was analyzed by gas chromatography after transesterification.The petroleum ether showed more efficiency in the extraction, the best result obtained was in the microalgae D. tertiolecta with 19.52% of lipid. The lipid profile analysis indicated a biodiesel stable to oxidation and elevated viscosity
Resumo:
The hydrogen gas is regarded as clean and renewable energy source, since it generates only water during combustion when used as fuel. It shows 2.75 times more energy content than any hydrocarbon and it can be converted into electrical, mechanical energy or heat. Inoculum sources have been successfully tested for hydrogen biological production in temperate climate countries as sludge treatment plants sewage, sludge treatment plant wastewater, landfill sample, among others. However, hydrogen biologic production with inoculum from environmental samples such as sediment reservoirs, especially in tropical countries like Brazil, is rarely investigated. Reservoirs and fresh water lake sediment may contain conditions for the survival of a wide variety of microorganisms which use different carbon sources mainly glucose and xylose, in the fermentation. Glucose is an easily biodegradable, present in most of the industrial effluents and can be obtained abundantly from agricultural wastes. A wide variety of wastewater resulting from agriculture, industry and pulp and paper processed from wood may contain xylose in its constitution. Such effluent contains glucose and xylose concentrations of about 2 g/L. In this sense, this work verified hydrogen biological production in anaerobic batch reactor (1L), at 37 ° C, initial pH 5.5, headspace with N2 (100%), Del Nery medium, vitamins and peptone (1 g/L), fed separately with glucose (2g/L) and xylose (2 g/L). The inoculum was taken from environmental sample (sediment reservoir Itupararanga - Ibiúna - SP-Brazil). It was previously purified in serial dilutions at H2 generation (10-5, 10-7, 10-10), and heat treated (90º C - 10 min) later to inhibited the H2 consumers. The maximum H2 generations obtained in both tests were observed at 552 h, as described below. At the reactors fed with glucose and xylose were observed, respectively, 9.1 and 8.6 mmol H2/L, biomass growth (0.2 and 0.2 nm); consumption of sugar concentrations 53.6% (1.1 glucose g/L) and 90.5% (1.8 xylose g/L); acetic acid generation (124.7 mg/L and 82.7 mg/L), butyric acid (134.0 mg/L and 230.4 mg/L) and there wasn’t methane generation in the reactors. Microscopic analysis of biomass in anaerobic reactors showed the predominance of Gram positive rods and rods with endospores, whose morphology is characteristic of H2-generating bacteria, in both tests. These species were selected from the natural environment. In DGGE analysis performed difference were observed between populations from inoculum and in tests. This analysis confirmed that some species of bacteria were selected which remained under the conditions imposed on the experiment. The efficiency of the pre-treatment of inoculum and the imposition of pH 5.5 inhibited methane-producing microorganisms and the consumers of H2. Therefore, the experimental conditions imposed allowed the attainment of bacterial consortium of producer H2 taken from an environmental sample with concentration of xylose and glucose similar to the ones of the industrial effluents.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In heterogeneous catalysis, numerous elements such as titanium and iron have been studied as nanoscale catalysts, but little is known about the use of niobium in nanocatalysis. The nanostructured particles have intrinsic and different physicochemical characteristics with great potential for use in industrial scale. Brazil having the largest known worldwide niobium reserve has the great challenge of creating pioneering technologies with the metal. Biodiesel is an alternative fuel and renewable substitute for regular diesel. Being biodegradable, non-toxic and have CO2 emissions lower than regular diesel, it contributes to the environment and to the independence from oil. The aim of this work was initially synthesize nanoscale particles of niobium pentoxide (Nanospheres, nanorods, nanofibers, nanocubes) from the sol-gel technique. The characterization of different nanoscale structures obtained was performed using different analytical techniques such as x-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The synthesized nanometer niobium oxide will be used as a heterogeneous catalyst in biodiesel synthesis from commercial soybean oil, checking in detail what the effect of morphology is presented (Nanospheres, nanorods, nanofibers, nanocubes) in the yield of biodiesel synthesis, comparing these results with those already described in literature for the amorphous niobium oxide and other oxide catalysts. The biodiesel obtained was characterized by gas chromatography system equipped with a FID detector