947 resultados para Bilayer Segmentation
Resumo:
We propose a new method for fully-automatic landmark detection and shape segmentation in X-ray images. Our algorithm works by estimating the displacements from image patches to the (unknown) landmark positions and then integrating them via voting. The fundamental contribution is that, we jointly estimate the displacements from all patches to multiple landmarks together, by considering not only the training data but also geometric constraints on the test image. The various constraints constitute a convex objective function that can be solved efficiently. Validated on three challenging datasets, our method achieves high accuracy in landmark detection, and, combined with statistical shape model, gives a better performance in shape segmentation compared to the state-of-the-art methods.
Resumo:
PURPOSE Segmentation of the proximal femur in digital antero-posterior (AP) pelvic radiographs is required to create a three-dimensional model of the hip joint for use in planning and treatment. However, manually extracting the femoral contour is tedious and prone to subjective bias, while automatic segmentation must accommodate poor image quality, anatomical structure overlap, and femur deformity. A new method was developed for femur segmentation in AP pelvic radiographs. METHODS Using manual annotations on 100 AP pelvic radiographs, a statistical shape model (SSM) and a statistical appearance model (SAM) of the femur contour were constructed. The SSM and SAM were used to segment new AP pelvic radiographs with a three-stage approach. At initialization, the mean SSM model is coarsely registered to the femur in the AP radiograph through a scaled rigid registration. Mahalanobis distance defined on the SAM is employed as the search criteria for each annotated suggested landmark location. Dynamic programming was used to eliminate ambiguities. After all landmarks are assigned, a regularized non-rigid registration method deforms the current mean shape of SSM to produce a new segmentation of proximal femur. The second and third stages are iteratively executed to convergence. RESULTS A set of 100 clinical AP pelvic radiographs (not used for training) were evaluated. The mean segmentation error was [Formula: see text], requiring [Formula: see text] s per case when implemented with Matlab. The influence of the initialization on segmentation results was tested by six clinicians, demonstrating no significance difference. CONCLUSIONS A fast, robust and accurate method for femur segmentation in digital AP pelvic radiographs was developed by combining SSM and SAM with dynamic programming. This method can be extended to segmentation of other bony structures such as the pelvis.
Resumo:
In this paper, we propose a fully automatic, robust approach for segmenting proximal femur in conventional X-ray images. Our method is based on hierarchical landmark detection by random forest regression, where the detection results of 22 global landmarks are used to do the spatial normalization, and the detection results of the 59 local landmarks serve as the image cue for instantiation of a statistical shape model of the proximal femur. To detect landmarks in both levels, we use multi-resolution HoG (Histogram of Oriented Gradients) as features which can achieve better accuracy and robustness. The efficacy of the present method is demonstrated by experiments conducted on 150 clinical x-ray images. It was found that the present method could achieve an average point-to-curve error of 2.0 mm and that the present method was robust to low image contrast, noise and occlusions caused by implants.
Resumo:
Knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic and robust approach for landmarking and segmentation of both pelvis and femur in a conventional AP X-ray. Our approach is based on random forest regression and hierarchical sparse shape composition. Experiments conducted on 436 clinical AP pelvis x-rays show that our approach achieves an average point-to-curve error around 1.3 mm for femur and 2.2 mm for pelvis, both with success rates around 98%. Compared to existing methods, our approach exhibits better performance in both the robustness and the accuracy.
Resumo:
An integrated approach for multi-spectral segmentation of MR images is presented. This method is based on the fuzzy c-means (FCM) and includes bias field correction and contextual constraints over spatial intensity distribution and accounts for the non-spherical cluster's shape in the feature space. The bias field is modeled as a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of intensity are added into the FCM cost functions. To reduce the computational complexity, the contextual regularizations are separated from the clustering iterations. Since the feature space is not isotropic, distance measure adopted in Gustafson-Kessel (G-K) algorithm is used instead of the Euclidean distance, to account for the non-spherical shape of the clusters in the feature space. These algorithms are quantitatively evaluated on MR brain images using the similarity measures.
Resumo:
We present a fully automatic segmentation method for multi-modal brain tumor segmentation. The proposed generative-discriminative hybrid model generates initial tissue probabilities, which are used subsequently for enhancing the classi�cation and spatial regularization. The model has been evaluated on the BRATS2013 training set, which includes multimodal MRI images from patients with high- and low-grade gliomas. Our method is capable of segmenting the image into healthy (GM, WM, CSF) and pathological tissue (necrotic, enhancing and non-enhancing tumor, edema). We achieved state-of-the-art performance (Dice mean values of 0.69 and 0.8 for tumor subcompartments and complete tumor respectively) within a reasonable timeframe (4 to 15 minutes).
Resumo:
Intensity non-uniformity (bias field) correction, contextual constraints over spatial intensity distribution and non-spherical cluster's shape in the feature space are incorporated into the fuzzy c-means (FCM) for segmentation of three-dimensional multi-spectral MR images. The bias field is modeled by a linear combination of smooth polynomial basis functions for fast computation in the clustering iterations. Regularization terms for the neighborhood continuity of either intensity or membership are added into the FCM cost functions. Since the feature space is not isotropic, distance measures, other than the Euclidean distance, are used to account for the shape and volumetric effects of clusters in the feature space. The performance of segmentation is improved by combining the adaptive FCM scheme with the criteria used in Gustafson-Kessel (G-K) and Gath-Geva (G-G) algorithms through the inclusion of the cluster scatter measure. The performance of this integrated approach is quantitatively evaluated on normal MR brain images using the similarity measures. The improvement in the quality of segmentation obtained with our method is also demonstrated by comparing our results with those produced by FSL (FMRIB Software Library), a software package that is commonly used for tissue classification.
Resumo:
It is widely accepted that the emergence of drug-resistant pathogens is the result of the overuse and misuse of antibiotics. Infectious Disease Society of America, Center for Disease Control and World Health Organization continue to view, with concern, the lack of antibiotics in development, especially those against Gram-negative bacteria. Antimicrobial peptides (AMPs) have been proposed as an alternative to antibiotics due to their selective activity against microbes and minor ability to induce resistance. For example, the Food and Drug Administration approved Daptomycin (DAP) in 2003 for treatment of severe skin infections caused by susceptible Gram-positive organisms. Currently, there are 12 to 15 examples of modified natural and synthetic AMPs in clinical development. But most of these agents are against Gram-positive bacteria. Therefore, there is unmet medical need for antimicrobials used to treat infections caused by Gram-negative bacteria. In this study, we show that a pro-apoptotic peptide predominantly used in cancer therapy, (KLAKLAK)2, is an effective antimicrobial against Gram-negative laboratory strains and clinical isolates. Despite the therapeutic promise, AMPs development is hindered by their susceptibility to proteolysis. Here, we demonstrate that an all-D enantiomer of (KLAKLAK)2, resistant to proteolysis, retains its activity against Gram-negative pathogens. In addition, we have elucidated the specific site and mechanism of action of D(KLAKLAK)2 through a repertoire of whole-cell and membrane-model assays. Although it is considered that development of resistance does not represent an obstacle for AMPs clinical development, strains with decreased susceptibility to these compounds have been reported. Staphylococci resistance to DAP was observed soon after its approval for use and has been linked to alterations of the cell wall (CW) and cellular membrane (CM) properties. Immediately following staphylococcal resistance, Enterococci resistance to DAP was seen, yet the mechanism of resistance in enterococci remains unknown. Our findings demonstrate that, similar to S. aureus, development of DAP-resistance in a vancomycin-resistant E. faecalis isolate is associated with alterations of the CW and properties of the CM. However, the genes linked to these changes in enterococci appear to be different from those described in S. aureus.
Resumo:
Genetic evidence has indicated that the segmentation gene runt plays a key role in regulating gene expression of the pair-rule genes hairy, even-skipped, and fushi tarazu. In contrast to other pair-rule genes, sequence data of the runt open reading frame did not reveal homologies to DNA-binding motifs of known transcriptional regulatory proteins. This thesis project examined several properties of the runt gene based on the sequence of the transcription unit, including the subcellular localization of the protein in vivo, its ability to bind DNA, and the functionality of a putative nucleotide binding domain.^ A runt-specific antibody was generated and used to demonstrate that runt is localized in the nucleus. Since the precise overlap of the pair-rule stripes is thought to be critical for the determination of cellular identity along the anterior-posterior axis, phasing of early runt expression in the blastoderm was examined with regard to the segmentation genes hairy, even-skipped, and fushi tarazu. runt was also expressed at later stages of embryogenesis, including expression in neuroblasts, and ganglion mother cells of the developing nervous system. Expression at this stage was required for the subsequent formation of specific neurons and runt was extensively expressed in the central and peripheral nervous systems.^ Several experiments were done to address the biochemical function of the runt protein. A direct interaction of runt with DNA was first examined. Although bacterial expressed runt was found to bind dsDNA-cellulose, subsequent experiments failed to detect sequence-specific interactions with DNA. Inter-species conservation of the putative nucleotide binding domain suggested that this region was functionally important, and runt protein bound a labeled ATP analog with high affinity in vitro. Finally, the effect of substitution of a critical residue of the nucleotide binding domain on runt activity was examined in vivo. Ectopic expression of the mutant protein indicated that this conserved substitution altered, but did not eliminate, runt activity as evaluated by segmentation phenotype and viability. ^
Resumo:
Previous analyses of aortic displacement and distension using computed tomography angiography (CTA) were performed on double-oblique multi-planar reformations and did not consider through-plane motion. The aim of this study was to overcome this limitation by using a novel computational approach for the assessment of thoracic aortic displacement and distension in their true four-dimensional extent. Vessel segmentation with landmark tracking was executed on CTA of 24 patients without evidence of aortic disease. Distension magnitudes and maximum displacement vectors (MDV) including their direction were analyzed at 5 aortic locations: left coronary artery (COR), mid-ascending aorta (ASC), brachiocephalic trunk (BCT), left subclavian artery (LSA), descending aorta (DES). Distension was highest for COR (2.3 ± 1.2 mm) and BCT (1.7 ± 1.1 mm) compared with ASC, LSA, and DES (p < 0.005). MDV decreased from COR to LSA (p < 0.005) and was highest for COR (6.2 ± 2.0 mm) and ASC (3.8 ± 1.9 mm). Displacement was directed towards left and anterior at COR and ASC. Craniocaudal displacement at COR and ASC was 1.3 ± 0.8 and 0.3 ± 0.3 mm. At BCT, LSA, and DES no predominant displacement direction was observable. Vessel displacement and wall distension are highest in the ascending aorta, and ascending aortic displacement is primarily directed towards left and anterior. Craniocaudal displacement remains low even close to the left cardiac ventricle.
Resumo:
In this paper, we propose novel methodologies for the automatic segmentation and recognition of multi-food images. The proposed methods implement the first modules of a carbohydrate counting and insulin advisory system for type 1 diabetic patients. Initially the plate is segmented using pyramidal mean-shift filtering and a region growing algorithm. Then each of the resulted segments is described by both color and texture features and classified by a support vector machine into one of six different major food classes. Finally, a modified version of the Huang and Dom evaluation index was proposed, addressing the particular needs of the food segmentation problem. The experimental results prove the effectiveness of the proposed method achieving a segmentation accuracy of 88.5% and recognition rate equal to 87%
Resumo:
BACKGROUND AND PURPOSE Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. METHODS We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. RESULTS Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. CONCLUSIONS In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity.
Resumo:
In diagnostic neuroradiology as well as in radiation oncology and neurosurgery, there is an increasing demand for accurate segmentation of tumor-bearing brain images. Atlas-based segmentation is an appealing automatic technique thanks to its robustness and versatility. However, atlas-based segmentation of tumor-bearing brain images is challenging due to the confounding effects of the tumor in the patient image. In this article, we provide a brief background on brain tumor imaging and introduce the clinical perspective, before we categorize and review the state of the art in the current literature on atlas-based segmentation for tumor-bearing brain images. We also present selected methods and results from our own research in more detail. Finally, we conclude with a short summary and look at new developments in the field, including requirements for future routine clinical use.
Resumo:
In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.