956 resultados para Bearing currents
Resumo:
(J. H. Hertz)
Resumo:
BACKGROUND Bolt-kit systems are increasingly used as an alternative to conventional external cerebrospinal fluid (CSF) drainage systems. Since 2009 we regularly utilize bolt-kit external ventricular drainage (EVD) systems with silver-bearing catheters inserted manually with a hand drill and skull screws for emergency ventriculostomy. For non-emergency situations, we use conventional ventriculostomy with subcutaneous tunneled silver-bearing catheters, performed in the operating room with a pneumatic drill. This retrospective analysis compared the two techniques in terms of infection rates. METHODS 152 patients (aged 17-85 years, mean=55.4 years) were included in the final analysis; 95 received bolt-kit silver-bearing catheters and 57 received conventionally implanted silver-bearing catheters. The primary endpoint combined infection parameters: occurrence of positive CSF culture, colonization of catheter tips, or elevated CSF white blood cell counts (>4/μl). Secondary outcome parameters were presence of microorganisms in CSF or on catheter tips. Incidence of increased CSF cell counts and number of patients with catheter malposition were also compared. RESULTS The primary outcome, defined as analysis of combined infection parameters (occurrence of either positive CSF culture, colonization of the catheter tips or raised CSF white blood cell counts >4/μl)was not significantly different between the groups (58.9% bolt-kit group vs. 63.2% conventionally implanted group, p=0.61, chi-square-test). The bolt-kit group was non-inferior and not superior to the conventional group (relative risk reduction of 6.7%; 90% confidence interval: -19.9% to 25.6%). Secondary outcomes showed no statistically significant difference in the incidence of microorganisms in CSF (2.1% bolt-kit vs. 5.3% conventionally implanted; p=0.30; chi-square-test). CONCLUSIONS This analysis indicates that silver-bearing EVD catheters implanted with a bolt-kit system outside the operating room do not significantly elevate the risk of CSF infection as compared to conventional implant methods.
Resumo:
BACKGROUND Membrane-associated guanylate kinase (MAGUK) proteins are important determinants of ion channel organization in the plasma membrane. In the heart, the MAGUK protein SAP97, encoded by the DLG1 gene, interacts with several ion channels via their PDZ domain-binding motif and regulates their function and localization. OBJECTIVE The purpose of this study was to assess in vivo the role of SAP97 in the heart by generating a genetically modified mouse model in which SAP97 is suppressed exclusively in cardiomyocytes. METHODS SAP97(fl/fl) mice were generated by inserting loxP sequences flanking exons 1-3 of the SAP97 gene. SAP97(fl/fl) mice were crossed with αMHC-Cre mice to generate αMHC-Cre/SAP97(fl/fl) mice, thus resulting in a cardiomyocyte-specific deletion of SAP97. Quantitative reverse transcriptase-polymerase chain reaction, western blots, and immunostaining were performed to measure mRNA and protein expression levels, and ion channel localization. The patch-clamp technique was used to record ion currents and action potentials. Echocardiography and surface ECGs were performed on anesthetized mice. RESULTS Action potential duration was greatly prolonged in αMHC-Cre/SAP97(fl/fl) cardiomyocytes compared to SAP97(fl/fl) controls, but maximal upstroke velocity was unchanged. This was consistent with the decreases observed in IK1, Ito, and IKur potassium currents and the absence of effect on the sodium current INa. Surface ECG revealed an increased corrected QT interval in αMHC-Cre/SAP97(fl/fl) mice. CONCLUSION These data suggest that ablation of SAP97 in the mouse heart mainly alters potassium channel function. Based on the important role of SAP97 in regulating the QT interval, DLG1 may be a susceptibility gene to be investigated in patients with congenital long QT syndrome.
Resumo:
Although employees are encouraged to take exercise after work to keep physically fit, they should not suffer injury. Some sports injuries that occur after work appear to be work-related and preventable. This study investigated whether cognitive failure mediates the influence of mental work demands and conscientiousness on risk-taking and risky and unaware behaviour during after-work sports activities. Participants were 129 employees (36% female) who regularly took part in team sports after work. A structural equation model showed that work-related cognitive failure significantly mediated the influence of mental work demands on risky behaviour during sports (p < .05) and also mediated the directional link between conscientiousness and risky behaviour during sports (p < .05). A path from risky behaviour during sports to sports injuries in the last four weeks was also significant (p < .05). Performance constraints, time pressure, and task uncertainty are likely to increase cognitive load and thereby boost cognitive failures both during work and sports activities after work. Some sports injuries after work could be prevented by addressing the issue of work redesign.
Resumo:
BACKGROUND Magnolia bark preparations from Magnolia officinalis of Asian medicinal systems are known for their muscle relaxant effect and anticonvulsant activity. These CNS related effects are ascribed to the presence of the biphenyl-type neolignans honokiol and magnolol that exert a potentiating effect on GABAA receptors. 4-O-methylhonokiol isolated from seeds of the North-American M. grandiflora was compared to honokiol for its activity to potentiate GABAA receptors and its GABAA receptor subtype-specificity was established. METHODS Different recombinant GABAA receptors were functionally expressed in Xenopus oocytes and electrophysiological techniques were used determine to their modulation by 4-O-methylhonokiol. RESULTS 3μM 4-O-methylhonokiol is shown here to potentiate responses of the α₁β₂γ₂ GABAA receptor about 20-fold stronger than the same concentration of honokiol. In the present study potentiation by 4-O-methylhonokiol is also detailed for 12 GABAA receptor subtypes to assess GABAA receptor subunits that are responsible for the potentiating effect. CONCLUSION The much higher potentiation of GABAA receptors at identical concentrations of 4-O-methylhonokiol as compared to honokiol parallels previous observations made in other systems of potentiated pharmacological activity of 4-O-methylhonokiol over honokiol. GENERAL SIGNIFICANCE The results point to the use of 4-O-methylhonokiol as a lead for GABAA receptor potentiation and corroborate the use of M. grandiflora seeds against convulsions in Mexican folk medicine.
Resumo:
A sigmatropic methyl shift from the angular position C-1 in ring to the position C-20 between rings and constitutes the crucial step in syntheses leading to a 20-methyl-isobacteriochlorin and to 20-methyl-pyrrocorphins which served as substrates in the investigation presented in the accompanying communication.
Resumo:
Pressure–Temperature–time (P–T–t) estimates of the syn-kinematic strain at the peak-pressure conditions reached during shallow underthrusting of the Briançonnais Zone in the Alpine subduction zone was made by thermodynamic modelling and 40Ar/39Ar dating in the Plan-de-Phasy unit (SE of the Pelvoux Massif, Western Alps). The dated phengite minerals crystallized syn-kinematically in a shear zone indicating top-to-the-N motion. By combining X-ray mapping with multi-equilibrium calculations, we estimate the phengite crystallization conditions at 270 ± 50 °C and 8.1 ± 2 kbar at an age of 45.9 ± 1.1 Ma. Combining this P–T–t estimate with data from the literature allows us to constrain the timing and geometry of Alpine continental subduction. We propose that the Briançonnais units were scalped on top of the slab during ongoing continental subduction and exhumed continuously until collision.
Resumo:
Natural deformation in carbonate mylonites bearing sheet silicates occurs via a complex interaction of granular flow and solution transfer processes and involves continuous cycles of dissolution, grain boundary diffusion, nucleation and growth. In this way, new sheet silicates (a) nucleate within voids formed by grain boundary sliding of calcite grains. (b) grow, and (c) rotate towards the shear plane. As a consequence, small mica grains show a wide range of orientations with respect to the shear plane, but moderate to large grains are subparallel both to each other and to the shear plane. Increases of average grain sizes with increasing temperature of sheet silicates in mica-rich layers is more pronounced than in mica-poor layers. In the calcitic matrix however, sheet silicates can only grow via solution-precipitation and mass transfer processes. Therefore, the observed grain size variability indicates drastic differences in mass transfer behavior between the individual layers, which might be related to differences in the fluid flux. Based on these observations, a conceptual model for the microfabric evolution in sheet silicate bearing mylonites is presented. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Collection of semen on the ground from the standing stallion represents an alternative method to dummy mount semen collection and is of increasing popularity for sport stallions, males suffering from health problems, or in studs without a dummy or suitable mare at disposal. Our aim was to collect and compare spermatological and physiological data associated with traditional and ground semen collection. Twelve of 23 Franches-Montagnes stallions were selected to carry out semen collection on a dummy and while standing in a crossed experimental protocol. Semen quantity and quality parameters, weight bearing on hindquarters, and behavioral and libido data were recorded. Ground versus dummy mount semen collection was accompanied by lower seminal volume (15.9 ± 14.6 vs. 22.0 ± 13.3 mL; P < 0.01) and lower total sperm count (4.913 ± 2.721 × 10(9) vs. 6.544 ± 2.856 × 10(9) sperm; P < 0.001). No significant differences were found concerning sperm motility and viability. Time to ejaculation was longer, and the number of attempts to ejaculation was higher (P = 0.053) in the standing position compared with the mount on the dummy. A higher (P < 0.01) amount of tail flagging was manifested by the stallions during ejaculation on the dummy compared to when standing. There was no difference in weight bearing on hindquarters when comparing dummy collection (51.2 ± 2.5%) and standing collection (48.9 ± 5.5%). Ground semen collection can be considered as a viable option for stallions that cannot mount a dummy or a mare. However, it requires training and may be not easily accepted by all stallions. Owners should be advised that ground semen collection is associated with significantly lower sperm numbers than with dummy mount semen collection.
Resumo:
Rutile (TiO2) is an important host phase for high field strength elements (HFSE) such as Nb in metamorphic and subduction zone environments. The observed depletion of Nb in arc rocks is often explained by the hypothesis that rutile sequesters HFSE in the subducted slab and overlying sediment, and is chemically inert with respect to aqueous fluids evolved during prograde metamorphism in the forearc to subarc environment. However, field observations of exhumed terranes, and experimental studies, indicate that HFSE may be soluble in complex aqueous fluids at high pressure (i.e., >0.5 GPa) and moderate to high temperature (i.e., >300 degrees C). In this study, we investigated experimentally the mobility of Nb in NaCl- and NaF-bearing aqueous fluids in equilibrium with Nb-bearing rutile at pressure-temperature conditions applicable to fluid evolution in arc environments. Niobium concentrations in aqueous fluid at rutile saturation were measured directly by using a hydrothermal diamond-anvil cell (HDAC) and synchrotron X-ray fluorescence (SXRF) at 2.1 to 6.5 GPa and 300-500 degrees C, and indirectly by performing mass loss experiments in a piston-cylinder (PC) apparatus at similar to 1 GPa and 700-800 degrees C. The concentration of Nb in a 10 wt% NaCl aqueous fluid increases from 6 to 11 mu g/g as temperature increases from 300 to 500 degrees C, over a pressure range from 2.1 to 2.8 GPa, consistent with a positive temperature dependence. The concentration of Nb in a 20 wt% NaCl aqueous fluid varies from 55 to 150 mu g/g at 300 to 500 degrees C, over a pressure range from 1.8 to 6.4 GPa; however, there is no discernible temperature or pressure dependence. The Nb concentration in a 4 wt% NaF-bearing aqueous fluid increases from 180 to 910 mu g/g as temperature increases from 300 to 500 degrees C over the pressure range 2.1 to 6.5 GPa. The data for the F-bearing fluid indicate that the Nb content of the fluid exhibits a dependence on temperature between 300 and 500 degrees C at >= 2 GPa, but there is no observed dependence on pressure. Together, the data demonstrate that the hydrothermal mobility of Nb is strongly controlled by the composition of the fluid, consistent with published data for Ti. At all experimental conditions, however, the concentration of Nb in the fluid is always lower than coexisting rutile, consistent with a role for rutile in moderating the Nb budget of arc rocks.
Resumo:
We explore the feasibility of obtaining a spatially resolved picture of Ca2+Ca2+ inward currents (ICaICa) in multicellular cardiac tissue by differentiating optically recorded Ca2+Ca2+ transients that accompany propagating action potentials. Patterned growth strands of neonatal rat ventricular cardiomyocytes were stained with the Ca2+Ca2+ indicators Fluo-4 or Fluo-4FF. Preparations were stimulated at 1 Hz, and Ca2+Ca2+ transients were recorded with high spatiotemporal resolution (50 μm50 μm, 2 kHz analog bandwidth) with a photodiode array. Signals were differentiated after appropriate digital filtering. Differentiation of Ca2+Ca2+ transients resulted in optically recorded calcium currents (ORCCs) that carried the temporal and pharmacological signatures of L-type Ca2+Ca2+ inward currents: the time to peak amounted to ∼2.1 ms∼2.1 ms (Fluo-4FF) and ∼2.4 ms∼2.4 ms (Fluo-4), full-width at half-maximum was ∼8 ms∼8 ms, and ORCCs were completely suppressed by 50 μmol/L50 μmol/LCdCl2CdCl2. Also, and as reported before from patch-clamp studies, caffeine reversibly depressed the amplitude of ORCCs. The results demonstrate that the differentiation of Ca2+Ca2+ transients can be used to obtain a spatially resolved picture of the initial phase of ICaICa in cardiac tissue and to assess relative changes of activation/fast inactivation of ICaICa following pharmacological interventions.
Resumo:
A phytochemical investigation of the lipophilic extract of Hypericum lissophloeus (smoothbark St. John's wort, Hypericaceae) was conducted, resulting in the isolation and identification of a new chromanone derivative: 5,7-dihydroxy-2,3-dimethyl-6-(3-methyl-but-2-enyl)-chroman-4-one (1). This compound was demonstrated to act as a potent stimulator of currents elicited by GABA in recombinant α1β2γ2 GABAA receptors, with a half-maximal potentiation observed at a concentration of about 4μM and a maximal potentiation of >4000%. Significant potentiation was already evident at a concentration as low as 0.1μM. Extent of potentiation strongly depends on the type of α subunit, the type of β subunit and the presence of the γ subunit.