970 resultados para Basic Research, Methedology


Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the first decade of the 21st century, many golf courses were developed in the Southeast of Spain, which greatly increased the number of these facilities. Almost all of these golf courses have been accompanied by large residential developments composed of thousands of dwelling units. This article seeks to identify the factors that influence golf courses’ water consumption and estimate the number of dwelling units that an associated residential development needs to have to provide the effluent necessary to fully meet the irrigation needs of a golf course. The study indicates that private golf courses achieve greater levels of irrigation efficiency than public golf courses and that the golf courses associated with residential developments subject the irrigation needs of the grassland to the sale requirements of the real estate properties. The study also estimates that a golf course requires approximately 3000 dwelling units with an average annual occupancy of 33% to achieve self-sufficiency for irrigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to their intriguing dielectric, pyroelectric, elasto-electric, or opto-electric properties, oxide ferroelectrics are vital candidates for the fabrication of most electronics. However, these extraordinary properties exist mainly in the temperature regime around the ferroelectric phase transition, which is usually several hundreds of K away from room temperature. Therefore, the manipulation of oxide ferroelectrics, especially moving the ferroelectric transition towards room temperature, is of great interest for application and also basic research. In this thesis, we demonstrate this using examples of NaNbO3 films. We show that the transition temperature of these films can be modified via plastic strain caused by epitaxial film growth on a structurally mismatched substrate, and this strain can be fixed by controlling the stoichiometry. The structural and electronic properties of Na1+xNbO3+δ thin films are carefully examined by among others XRD (e.g. RSM) and TEM and cryoelectronic measurements. Especially the electronic features are carefully analyzed via specially developed interdigitated electrodes in combination with integrated temperature sensor and heater. The electronic data are interpreted using existing as well as novel theories and models, they are proved to be closely correlated to the structural characteristics. The major results are: -Na1+xNbO3+δ thin films can be grown epitaxially on (110)NdGaO3 with a thickness up to 140 nm (thicker films have not been studied). Plastic relaxation of the compressive strain sets in when the thickness of the film exceeds approximately 10 – 15 nm. Films with excess Na are mainly composed of NaNbO3 with minor contribution of Na3NbO4. The latter phase seems to form nanoprecipitates that are homogeneously distributed in the NaNbO3 film which helps to stabilize the film and reduce the relaxation of the strain. -For the nominally stoichiometric films, the compressive strain leads to a broad and frequency-dispersive phase transition at lower temperature (125 – 147 K). This could be either a new transition or a shift in temperature of a known transition. Considering the broadness and frequency dispersion of the transition, this is actually a transition from the dielectric state at high temperature to a relaxor-type ferroelectric state at low temperature. The latter is based on the formation of polar nano-regions (PNRs). Using the electric field dependence of the freezing temperature, allows a direct estimation of the volume (70 to 270 nm3) and diameter (5.2 to 8 nm, spherical approximation) of the PNRs. The values confirm with literature values which were measured by other technologies. -In case of the off-stoichiometric samples, we observe again the classical ferroelectric behavior. However, the thermally hysteretic phase transition which is observed around 620 – 660 K for unstrained material is shifted to room temperature due to the compressive strain. Beside to the temperature shift, the temperature dependence of the permittivity is nearly identical for strained and unstrained materials. -The last but not least, in all cases, a significant anisotropy in the electronic and structural properties is observed which arises automatically from the anisotropic strain caused by the orthorhombic structure of the substrate. However, this anisotropy cannot be explained by the classical model which tries to fit an orthorhombic film onto an orthorhombic substrate. A novel “square lattice” model in which the films adapt a “square” shaped lattice in the plane of the film during the epitaxial growth at elevated temperature (~1000 K) nicely explains the experimental results. In this thesis we sketch a way to manipulate the ferroelectricity of NaNbO3 films via strain and stoichiometry. The results indicate that compressive strain which is generated by the epitaxial growth of the film on mismatched substrate is able to reduce the ferroelectric transition temperature or induce a phase transition at low temperature. Moreover, by adding Na in the NaNbO3 film a secondary phase Na3NbO4 is formed which seems to stabilize the main phase NaNbO3 and the strain and, thus, is able to engineer the ferroelectric behavior from the expected classical ferroelectric for perfect stoichiometry to relaxor-type ferroelectric for slightly off-stoichiometry, back to classical ferroelectric for larger off-stoichiometry. Both strain and stoichiometry are proven as perfect methods to optimize the ferroelectric properties of oxide films.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The world of Computational Biology and Bioinformatics presently integrates many different expertise, including computer science and electronic engineering. A major aim in Data Science is the development and tuning of specific computational approaches to interpret the complexity of Biology. Molecular biologists and medical doctors heavily rely on an interdisciplinary expert capable of understanding the biological background to apply algorithms for finding optimal solutions to their problems. With this problem-solving orientation, I was involved in two basic research fields: Cancer Genomics and Enzyme Proteomics. For this reason, what I developed and implemented can be considered a general effort to help data analysis both in Cancer Genomics and in Enzyme Proteomics, focusing on enzymes which catalyse all the biochemical reactions in cells. Specifically, as to Cancer Genomics I contributed to the characterization of intratumoral immune microenvironment in gastrointestinal stromal tumours (GISTs) correlating immune cell population levels with tumour subtypes. I was involved in the setup of strategies for the evaluation and standardization of different approaches for fusion transcript detection in sarcomas that can be applied in routine diagnostic. This was part of a coordinated effort of the Sarcoma working group of "Alleanza Contro il Cancro". As to Enzyme Proteomics, I generated a derived database collecting all the human proteins and enzymes which are known to be associated to genetic disease. I curated the data search in freely available databases such as PDB, UniProt, Humsavar, Clinvar and I was responsible of searching, updating, and handling the information content, and computing statistics. I also developed a web server, BENZ, which allows researchers to annotate an enzyme sequence with the corresponding Enzyme Commission number, the important feature fully describing the catalysed reaction. More to this, I greatly contributed to the characterization of the enzyme-genetic disease association, for a better classification of the metabolic genetic diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The EASL Monothematic Conference on Translational Research in Viral Hepatitis brought together a group of leading scientists and clinicians working on both, basic and clinical aspects of viral hepatitis, thereby building bridges from bench to bedside. This report recapitulates the presentations and discussions at the conference held in Lyon, France on November 29-30, 2013. In recent years, great advances have been made in the field of viral hepatitis, particularly in hepatitis C virus (HCV) infection. The identification of IL28B genetic polymorphisms as a major determinant for spontaneous and treatment-induced HCV clearance was a seminal discovery. Currently, hepatologists are at the doorstep of even greater advances, with the advent of a wealth of directly acting antivirals (DAAs) against HCV. Indeed, promising results have accumulated over the last months and few years, showing sustained virological response (SVR) rates of up to 100% with interferon-free DAA combination therapies. Thus, less than 25years after its identification, HCV infection may soon be curable in the vast majority of patients, highlighting the great success of HCV research over the last decades. However, viral hepatitis and its clinical complications such as liver cirrhosis and hepatocellular carcinoma (HCC) remain major global challenges. New therapeutic strategies to tackle hepatitis B virus (HBV) and hepatitis D virus (HDV) infection are needed, as current therapies have undeniable limitations. Nucleoside/nucleotide analogues (NUC) can efficiently control HBV replication and reduce or even reverse liver damage. However, these drugs have to be given for indefinite periods in most patients to maintain virological and biochemical responses. Although sustained responses off treatment can be achieved by treatment with (pegylated) interferon-α, only about 10-30% of patients effectively resolve chronic hepatitis B. It was the goal of this conference to review the progress made over the last years in chronic viral hepatitis research and to identify key questions that need to be addressed in order to close the gap between basic and clinical research and to develop novel preventive and treatment approaches for this most common cause of liver cirrhosis and HCC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Search strategy and free text searching of database resources for Health Sciences

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In populational sampling it is vitally important to clarify and discern: first, the design or sampling method used to solve the research problem; second, the sampling size, taking into account different components (precision, reliability, variance); third, random selection and fourth, the precision estimate (sampling errors), so as to determine if it is possible to infer the obtained estimates from the target population. The existing difficulty to use concepts from the sampling theory is to understand them with absolute clarity and, to achieve it, the help from didactic-pedagogical strategies arranged as conceptual “mentefactos” (simple hierarchic diagrams organized from propositions) may prove useful. This paper presents the conceptual definition, through conceptual “mentefactos”, of the most important populational probabilistic sampling concepts, in order to obtain representative samples from populations in health research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: The effect of water immersion on the shear bond strength (SBS) between 1 heat-polymerizing acrylic resin (Lucitone 550-L) and 4 autopolymerizing reline resins (Kooliner-K, New Truliner-N, Tokuso Rebase Fast-T, Ufi Gel Hard-U) was investigated. Specimens relined with resin L were also evaluated. Materials and Methods: One hundred sixty cylinders (20 × 20 mm) of L denture base resin were processed, and the reline resins were packed on the prepared bonding surfaces using a split-mold (3.5 × 5.0 mm). Shear tests (0.5 mm/min) were performed on the specimens (n = 8) after polymerization (control), and after immersion in water at 37°C for 7, 90, and 180 days. All fractured surfaces were examined by scanning electron microscopy (SEM) to calculate the percentage of cohesive fracture (PCF). Shear data were analyzed with 2-way ANOVA and Tukey's test; Kruskall-Wallis test was used to analyze PCF data (α = 0.05). Results: After 90 days water immersion, an increase in the mean SBS was observed for U (11.13 to 16.53 MPa; p < 0.001) and T (9.08 to 13.24 MPa, p = 0.035), whereas resin L showed a decrease (21.74 MPa to 14.96 MPa; p < 0.001). The SBS of resins K (8.44 MPa) and N (7.98 MPa) remained unaffected. The mean PCF was lower than 32.6% for K, N, and T, and higher than 65.6% for U and L. Conclusions: Long-term water immersion did not adversely affect the bond of materials K, N, T, and U and decreased the values of resin L. Materials L and U failed cohesively, and K, N, and T failed adhesively. © 2007 by The American College of Prosthodontists.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Today's malaria control efforts are limited by our incomplete understanding of the biology of Plasmodium and of the complex relationships between human populations and the multiple species of mosquito and parasite. Research priorities include the development of in vitro culture systems for the complete life cycle of P. falciparum and P. vivax and the development of an appropriate liver culture system to study hepatic stages. In addition, genetic technologies for the manipulation of Plasmodium need to be improved, the entire parasite metabolome needs to be characterized to identify new druggable targets, and improved information systems for monitoring the changes in epidemiology, pathology, and host-parasite-vector interactions as a result of intensified control need to be established to bridge the gap between bench, preclinical, clinical, and population-based sciences.