944 resultados para BRAIN DEVELOPMENT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inter-individual heterogeneity is evident in aging; education level is known to contribute for this heterogeneity. Using a cross-sectional study design and network inference applied to resting-state fMRI data, we show that aging was associated with decreased functional connectivity in a large cortical network. On the other hand, education level, as measured by years of formal education, produced an opposite effect on the long-term. These results demonstrate the increased brain efficiency in individuals with higher education level that may mitigate the impact of age on brain functional connectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of studies in schizophrenic patients report a decrease of glutathione (GSH) in prefrontal cortex (PFC) and cerebrospinal fluid, a decrease in mRNA levels for two GSH synthesizing enzymes and a deficit in parvalbumin (PV) expression in a subclass of GABA neurons in PFC. GSH is an important redox regulator, and its deficit could be responsible for cortical anomalies, particularly in regions rich in dopamine innervation. We tested in an animal model if redox imbalance (GSH deficit and excess extracellular dopamine) during postnatal development would affect PV-expressing neurons. Three populations of interneurons immunolabeled for calcium-binding proteins were analyzed quantitatively in 16-day-old rat brain sections. Treated rats showed specific reduction in parvalbumin immunoreactivity in the anterior cingulate cortex, but not for calbindin and calretinin. These results provide experimental evidence for the critical role of redox regulation in cortical development and validate this animal model used in schizophrenia research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the contribution of inflammatory processes in the etiology of late-onset Alzheimer's disease (AD) has been suspected for years, most studies were confined to the analysis of cell-mediated immunological reactions thought to represent an epiphenomenon of AD lesion development. Based on the traditional view of the "immunological privilege" of the brain, which excludes a direct access of human immunoglobulins (Ig) to the central nervous system under normal conditions, little attention has been paid to a possible role of humoral immunity in AD pathogenesis. In the first part of this review, we summarize evidences for a blood-brain barrier (BBB) dysfunction in this disorder and critically comment on earlier observations supporting the presence of anti-brain autoantibodies and immunoglobulins (Ig) in AD brains. Current concepts regarding the Ig turnover in the central nervous system and the mechanisms of glial and neuronal Fc receptors activation are also discussed. In the second part, we present new ex vivo and in vitro data suggesting that human immunoglobulins can interact with tau protein and alter both the dynamics and structural organization of microtubules. Subsequent experiments needed to test this new working hypothesis are addressed at the end of the review.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

den Dunnen et al. [den Dunnen, W.F.A., Brouwer, W.H., Bijlard, E., Kamphuis, J., van Linschoten, K., Eggens-Meijer, E., Holstege, G., 2008. No disease in the brain of a 115-year-old woman. Neurobiol. Aging] had the opportunity to follow up the cognitive functioning of one of the world's oldest woman during the last 3 years of her life. They performed two neuropsychological evaluations at age 112 and 115 that revealed a striking preservation of immediate recall abilities and orientation. In contrast, working memory, retrieval from semantic memory and mental arithmetic performances declined after age 112. Overall, only a one-point decrease of MMSE score occurred (from 27 to 26) reflecting the remarkable preservation of cognitive abilities. The neuropathological assessment showed few neurofibrillary tangles (NFT) in the hippocampal formation compatible with Braak staging II, absence of amyloid deposits and other types of neurodegenerative lesions as well as preservation of neuron numbers in locus coeruleus. This finding was related to a striking paucity of Alzheimer disease (AD)-related lesions in the hippocampal formation. The present report parallels the early descriptions of rare "supernormal" centenarians supporting the dissociation between brain aging and AD processes. In conjunction with recent stereological analyses in cases aged from 90 to 102 years, it also points to the marked resistance of the hippocampal formation to the degenerative process in this age group and possible dissociation between the occurrence of slight cognitive deficits and development of AD-related pathologic changes in neocortical areas. This work is discussed in the context of current efforts to identify the biological and genetic parameters of human longevity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Astrocytes are now considered as key players in brain information processing because of their newly discovered roles in synapse formation and plasticity, energy metabolism and blood flow regulation. However, our understanding of astrocyte function is still fragmented compared to other brain cell types. A better appreciation of the biology of astrocytes requires the development of tools to generate animal models in which astrocyte-specific proteins and pathways can be manipulated. In addition, it is becoming increasingly evident that astrocytes are also important players in many neurological disorders. Targeted modulation of protein expression in astrocytes would be critical for the development of new therapeutic strategies. Gene transfer is valuable to target a subpopulation of cells and explore their function in experimental models. In particular, viral-mediated gene transfer provides a rapid, highly flexible and cost-effective, in vivo paradigm to study the impact of genes of interest during central nervous system development or in adult animals. We will review the different strategies that led to the recent development of efficient viral vectors that can be successfully used to selectively transduce astrocytes in the mammalian brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Aquaporin-4 (AQP4), a water channel, is induced early after stroke.The role of AQP4 in the development and resolution of oedema after stroke remainsdebated. The absence of AQP4 in KO-mice reduces the cytotoxic oedema formationbut in contrast aggravates the vasogenic edema. Thrombin at high dose is known toinduce an oedema and at a low dose (thrombin preconditioning, TPC), to inducetolerance to ischemia. We studied the expression of AQPs in ischemic mouse brainsafter TPC and correlation with oedema formation.Methods: For thrombin preconditioning (TPC), mice were injected intracerebroventricularlywith a low dose of thrombin (0.1U in 2?l), followed 24 hours laterby a 30 min transient middle cerebral occlusion (MCAo). AQP4 expression wasevaluated by immunohistochemistry 1h and 48h after ischemia and correlated withoedema formation in vehicle injected and TPC mice.Results: After TPC, oedema formation, assessed by hemispheric enlargement, wassignificantly attenuated at 1h (4.5 ± 2% vs 11.0 ± 5% in CTL, p<0.05, n=8),which was confirmed by wet weight/dry weight ratio (79.6 ± 0.3% vs 80.1 ± 0.1in ctl, p<0.05, n=0.05). At the same time-point, AQP4 expression was significantlyincreased in TPC mice, (148.9% of the control, P<0.05, n=6) in the ischemicstriatum. The oedema was still reduced at 48h after stroke onset in TPC mice. At48h, the level of expression for AQP4 was still higher for TPC animal although notreaching significance (NS). The lesion size was significantly reduced at 48h afterstroke in TPC mice (5.1 ± 1.6 vs 10.6 ± 1.8 mm2 in CTL, n=5).Discussion: The correlation between the early induction of AQP4 and the decreaseof oedema formation in TPC mice suggests that the induction of AQP4 preventsthe development of oedema.Funding: FNS #3100A0-108001, #3200 68306.02 & #3100A0-112484 and Swiss-Heart foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutaryl-CoA dehydrogenase (GCDH, EC 1.3.99.7) deficiency, known as glutaric acidemia type I, is one of the more common organic acidurias. To investigate the role of this pathway in different organs we studied the tissue-specific expression pattern of rat Gcdh. The open reading frame cDNA of the rat Gcdh gene was cloned from rat brain mRNA by RT-PCR, allowing the synthesis of digoxigenin-labeled in situ hybridization (ISH) riboprobes. Gcdh mRNA expression was analyzed by ISH on cryosections of adult rat brain, kidney, liver, spleen and heart muscle, as well as on E15 and E18 rat embryos. Gcdh was found expressed in the whole rat brain, almost exclusively in neurons. Gcdh was absent from astrocytes but expressed in rare oligodendrocytes. Strong Gcdh expression was found in liver and spleen, where expression appears predominant to lymphatic nodules. In kidney, the highest Gcdh expression is found in the juxtamedullar cortex (but not in glomerula), and at lower levels in medulla. Heart muscle was negative. During embryonic development, Gcdh was found well expressed in liver, intestinal mucosa and skin, as well as at lower levels in CNS. Further studies are ongoing to provide evidence on the presence of the entire pathway in CNS in order to understand the mechanisms leading to neurotoxicity in glutaric aciduria. The high expression of Gcdh in kidney may explain why certain patients with residual enzyme activity are low excretors at the urine metabolite level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

From toddler to late teenager, the macroscopic pattern of axonal projections in the human brain remains largely unchanged while undergoing dramatic functional modifications that lead to network refinement. These functional modifications are mediated by increasing myelination and changes in axonal diameter and synaptic density, as well as changes in neurochemical mediators. Here we explore the contribution of white matter maturation to the development of connectivity between ages 2 and 18 y using high b-value diffusion MRI tractography and connectivity analysis. We measured changes in connection efficacy as the inverse of the average diffusivity along a fiber tract. We observed significant refinement in specific metrics of network topology, including a significant increase in node strength and efficiency along with a decrease in clustering. Major structural modules and hubs were in place by 2 y of age, and they continued to strengthen their profile during subsequent development. Recording resting-state functional MRI from a subset of subjects, we confirmed a positive correlation between structural and functional connectivity, and in addition observed that this relationship strengthened with age. Continuously increasing integration and decreasing segregation of structural connectivity with age suggests that network refinement mediated by white matter maturation promotes increased global efficiency. In addition, the strengthening of the correlation between structural and functional connectivity with age suggests that white matter connectivity in combination with other factors, such as differential modulation of axonal diameter and myelin thickness, that are partially captured by inverse average diffusivity, play an increasingly important role in creating brain-wide coherence and synchrony.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis at hand is concerned with the spatio-temporal brain mechanisms of visual food perception as investigated by electrical neuroimaging. Due to the increasing prevalence of obesity and its associated challenges for public health care, there is a need to better understand behavioral and brain processes underlying food perception and food-based decision-making. The first study (Study A) of this thesis was concerned with the role of repeated exposure to visual food cues. In our everyday lives we constantly and repeatedly encounter food and these exposures influence our food choices and preferences. In Study A, we therefore applied electrical neuroimaging analyses of visual evoked potentials to investigate the spatio-temporal brain dynamics linked to the repeated viewing of high- and low-energy food cues (published manuscript: "The role of energetic value in dynamic brain response adaptation during repeated food image viewing" (Lietti et al., 2012)). In this study, we found that repetitions differentially affect behavioral and brain mechanisms when high-energy, as opposed to low-energy foods and non-food control objects, were viewed. The representation of high-energy food remained invariant between initial and repeated exposures indicating that the sight of high-energy dense food induces less behavioral and neural adaptation than the sight of low-energy food and non-food control objects. We discuss this finding in the context of the higher salience (due to greater motivation and higher reward or hedonic valuation) of energy- dense food that likely generates a more mnemonically stable representation. In turn, this more invariant representation of energy-dense food is supposed to (partially) explain why these foods are over-consumed despite of detrimental health consequences. In Study Β we investigated food responsiveness in patients who had undergone Roux-en-Y gastric bypass surgery to overcome excessive obesity. This type of gastric bypass surgery is not only known to alter food appreciation, but also the secretion patterns of adipokines and gut peptides. Study Β aimed at a comprehensive and interdisciplinary investigation of differences along the gut-brain axis in bypass-operated patients as opposed to weight-matched non-operated controls. On the one hand, the spatio-temporal brain dynamics to the visual perception of high- vs. low-energy foods under differing states of motivation towards food intake (i.e. pre- and post-prandial) were assessed and compared between groups. On the other hand, peripheral gut hormone measures were taken in pre- and post-prandial nutrition state and compared between groups. In order to evaluate alterations in the responsiveness along the gut-brain-axis related to gastric bypass surgery, correlations between both measures were compared between both participant groups. The results revealed that Roux-en- Y gastric bypass surgery alters the spatio-temporal brain dynamics to the perception of high- and low-energy food cues, as well as the responsiveness along the gut-brain-axis. The potential role of these response alterations is discussed in relation to previously observed changes in physiological factors and food intake behavior post-Roux-en-Y gastric bypass surgery. By doing so, we highlight potential behavioral, neural and endocrine (i.e. gut hormone) targets for the future development of intervention strategies for deviant eating behavior and obesity. Together, the studies showed that the visual representation of foods in the brain is plastic and that modulations in neural activity are already noted at early stages of visual processing. Different factors of influence such as a repeated exposure, Roux-en-Y gastric bypass surgery, motivation (nutrition state), as well as the energy density of the visually perceived food were identified. En raison de la prévalence croissante de l'obésité et du défi que cela représente en matière de santé publique, une meilleure compréhension des processus comportementaux et cérébraux liés à la nourriture sont nécessaires. En particulier, cette thèse se concentre sur l'investigation des mécanismes cérébraux spatio-temporels liés à la perception visuelle de la nourriture. Nous sommes quotidiennement et répétitivement exposés à des images de nourriture. Ces expositions répétées influencent nos choix, ainsi que nos préférences alimentaires. La première étude (Study A) de cette thèse investigue donc l'impact de ces exposition répétée à des stimuli visuels de nourriture. En particulier, nous avons comparé la dynamique spatio-temporelle de l'activité cérébrale induite par une exposition répétée à des images de nourriture de haute densité et de basse densité énergétique. (Manuscrit publié: "The role of energetic value in dynamic brain response adaptation during repeated food image viewing" (Lietti et al., 2012)). Dans cette étude, nous avons pu constater qu'une exposition répétée à des images représentant de la nourriture de haute densité énergétique, par opposition à de la nourriture de basse densité énergétique, affecte les mécanismes comportementaux et cérébraux de manière différente. En particulier, la représentation neurale des images de nourriture de haute densité énergétique est similaire lors de l'exposition initiale que lors de l'exposition répétée. Ceci indique que la perception d'images de nourriture de haute densité énergétique induit des adaptations comportementales et neurales de moindre ampleur par rapport à la perception d'images de nourriture de basse densité énergétique ou à la perception d'une « catégorie contrôle » d'objets qui ne sont pas de la nourriture. Notre discussion est orientée sur les notions prépondérantes de récompense et de motivation qui sont associées à la nourriture de haute densité énergétique. Nous suggérons que la nourriture de haute densité énergétique génère une représentation mémorielle plus stable et que ce mécanisme pourrait (partiellement) être sous-jacent au fait que la nourriture de haute densité énergétique soit préférentiellement consommée. Dans la deuxième étude (Study Β) menée au cours de cette thèse, nous nous sommes intéressés aux mécanismes de perception de la nourriture chez des patients ayant subi un bypass gastrique Roux- en-Y, afin de réussir à perdre du poids et améliorer leur santé. Ce type de chirurgie est connu pour altérer la perception de la nourriture et le comportement alimentaire, mais également la sécrétion d'adipokines et de peptides gastriques. Dans une approche interdisciplinaire et globale, cette deuxième étude investigue donc les différences entre les patients opérés et des individus « contrôles » de poids similaire au niveau des interactions entre leur activité cérébrale et les mesures de leurs hormones gastriques. D'un côté, nous avons investigué la dynamique spatio-temporelle cérébrale de la perception visuelle de nourriture de haute et de basse densité énergétique dans deux états physiologiques différent (pre- et post-prandial). Et de l'autre, nous avons également investigué les mesures physiologiques des hormones gastriques. Ensuite, afin d'évaluer les altérations liées à l'intervention chirurgicale au niveau des interactions entre la réponse cérébrale et la sécrétion d'hormone, des corrélations entre ces deux mesures ont été comparées entre les deux groupes. Les résultats révèlent que l'intervention chirurgicale du bypass gastrique Roux-en-Y altère la dynamique spatio-temporelle de la perception visuelle de la nourriture de haute et de basse densité énergétique, ainsi que les interactions entre cette dernière et les mesures périphériques des hormones gastriques. Nous discutons le rôle potentiel de ces altérations en relation avec les modulations des facteurs physiologiques et les changements du comportement alimentaire préalablement déjà démontrés. De cette manière, nous identifions des cibles potentielles pour le développement de stratégies d'intervention future, au niveau comportemental, cérébral et endocrinien (hormones gastriques) en ce qui concerne les déviances du comportement alimentaire, dont l'obésité. Nos deux études réunies démontrent que la représentation visuelle de la nourriture dans le cerveau est plastique et que des modulations de l'activité neurale apparaissent déjà à un stade très précoce des mécanismes de perception visuelle. Différents facteurs d'influence comme une exposition repetee, le bypass gastrique Roux-en-Y, la motivation (état nutritionnel), ainsi que la densité énergétique de la nourriture qui est perçue ont pu être identifiés.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregating cell cultures prepared from fetal rat telencephalon express the two subunits [cerebellar soluble lectins (CSL) 1 and 2] of a soluble, mannose-specific endogenous lectin (CSL) in a development-dependent manner. Increased CSL synthesis was found at an early postmitotic stage as well as during the period of maximal myelination. Repetitive treatment of early cultures with epidermal growth factor (EGF, 3nM) caused a great stimulation of CSL biosynthesis. Immunocytochemical studies revealed particularly intense CSL-specific staining in small, EGF-responsive cells, presumably glial cells. Large quantities of CSL-immunoreactive material were found also in the extracellular space and on the external side of the plasma membrane, indicating abundant release of CSL. The present findings suggest that EGF or EGF-related factors in the brain are able to regulate the expression of an endogenous lectin, affecting brain ontogeny.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of the ACuteTox project aimed at the development of non-animal testing strategies for predicting human acute oral toxicity, aggregating brain cell cultures (AGGR) were examined for their capability to detect organ-specific toxicity. Previous multicenter evaluations of in vitro cytotoxicity showed that some 20% of the tested chemicals exhibited significantly lower in vitro toxicity as expected from in vivo toxicity data. This was supposed to be due to toxicity at supracellular (organ or system) levels. To examine the capability of AGGR to alert for potential organ-specific toxicants, concentration-response studies were carried out in AGGR for 86 chemicals, taking as endpoints the mRNA expression levels of four selected genes. The lowest observed effect concentration (LOEC) determined for each chemical was compared with the IC20 reported for the 3T3/NRU cytotoxicity assay. A LOEC lower than IC20 by at least a factor of 5 was taken to alert for organ-specific toxicity. The results showed that the frequency of alerts increased with the level of toxicity observed in AGGR. Among the chemicals identified as alert were many compounds known for their organ-specific toxicity. These findings suggest that AGGR are suitable for the detection of organ-specific toxicity and that they could, in conjunction with the 3T3/NRU cytotoxicity assay, improve the predictive capacity of in vitro toxicity testing.