997 resultados para BONE DEFECT
Resumo:
Current genetic methods enable highly specific identification of DNA from modern fish bone. The applicability of these methods to the identification of archaeological fish bone was investigated through a study of a sample from late Holocene southeast Queensland sites. The resultant overall success rate of 2% indicates that DNA analysis is, as yet, not feasible for identifying fish bone from any given site. Taphonomic issues influencing the potential of genetic identification methods are raised and discussed in light of this result.
Resumo:
Introduction: Osteogenic effects of therapeutic fluoride have been reported; however, the impact of exposure to low level water fluoridation on bone density is not clear. We investigated the effect of long-term exposure to fluoridated water from growth to young adulthood on bone mineral density (BMD). Methods: BMD was measured in 24 healthy women from Regina (fluoride 0.1 mg/L) and 33 from Saskatoon (fluoride 1.0 mg/L), with no differences between groups for height, weight, lifestyle or dietary factors. Results: Saskatoon women had significantly higher mean BMD at total anterior-posterior lumbar spine (APS) and estimated volumetric L3 (VLS), with no difference at total body (TB) or proximal femur (PF). Conclusion: Exposure to water fluoridation during the growing years may have a power impact on axial spine bone density in young women.
Resumo:
We modified the noninvasive, in vivo technique for strain application in the tibiae of rats (Turner et al,, Bone 12:73-79, 1991), The original model applies four-point bending to right tibiae via an open-loop, stepper-motor-driven spring linkage, Depending on the magnitude of applied load, the model produces new bone formation at periosteal (Ps) or endocortical surfaces (Ec.S). Due to the spring linkage, however, the range of frequencies at which loads can be applied is limited. The modified system replaces this design with an electromagnetic vibrator. A load transducer in series with the loading points allows calibration, the loaders' position to be adjusted, and cyclic loading completed under load central as a closed servo-loop. Two experiments were conducted to validate the modified system: (1) a strain gauge was applied to the lateral surface of the right tibia of 5 adult female rats and strains measured at applied loads from 10 to 60 N; and (2) the bone formation response was determined in 28 adult female Sprague-Dawley rats. Loading was applied as a haversine wave with a frequency of 2 Hz for 18 sec, every second day for 10 days. Peak bending loads mere applied at 33, 40, 52, and 64 N, and a sham-loading group tr as included at 64 N, Strains in the tibiae were linear between 10 and 60 N, and the average peak strain at the Ps.S at 60 N was 2664 +/- 250 microstrain, consistent with the results of Turner's group. Lamellar bone formation was stimulated at the Ec.S by applied bending, but not by sham loading. Bending strains above a loading threshold of 40 N increased Ec Lamellar hone formation rate, bone forming surface, and mineral apposition rate with a dose response similar to that reported by Turner et al, (J Bone Miner Res 9:87-97, 1994). We conclude that the modified loading system offers precision for applied loads of between 0 and 70 N, versatility in the selection of loading rates up to 20 Hz, and a reproducible bone formation response in the rat tibia, Adjustment of the loader also enables study of mechanical usage in murine tibia, an advantage with respect to the increasing variety of transgenic strains available in bone and mineral research. (Bone 23:307-310; 1998) (C) 1998 by Elsevier Science Inc. All rights reserved.
Resumo:
Background and objectives: The greatest increase in bone mineral content occurs during adolescence. The amount of bone accrued may significantly affect bone mineral status in later life. We carried out a longitudinal investigation of the magnitude and timing of peak bone mineral content velocity (PBMCV) in relation to peak height velocity (PHV) and the age at menarche in a group of adolescent girls over a 6-year period. Methods: The 53 girls in this study are a subset of the 115 girls (initially 8 to 16 years) in a g-year longitudinal study of bone mineral accretion. The ages at PBMCV and PHV were determined by using a cubic spline curve fitting procedure. Determinations were based on height (n = 12) and bone (n = 6) measurements over 6 years. Results: The timing of PBMCV and menarche were coincident, preceded approximately 1 year earlier by PHV. Correlation showed a negative relationship between age at menarche and both peak bone mineral accrual (r = -0.42, P
Resumo:
In this paper, we develop a simple four parameter population balance model of in vivo neutrophil formation following bone marrow rescue therapy. The model is used to predict the number and type of neutrophil progenitors required to abrogate the period of severe neutropenia that normally follows a bone marrow transplant. The estimated total number of 5 billion neutrophil progenitors is consistent with the value extrapolated from a human trial. The model provides a basis for designing ex vivo expansion protocols.
Resumo:
Back,ground To examine the role of long-term swimming exercise on regional and total body bone mineral density (BMD) in men. Methods. Experimental design: Cross-sectional. Setting: Musculoskeletal research laboratory at a medical center, Participants:We compared elite collegiate swimmers (n=11) to age-, weight-, and height-matched non-athletic controls (n=11), Measures: BMD (g/cm(2)) of the lumbar spine L2-4, proximal femur (femoral neck, trochanter, Ward's triangle), total body and various subregions of the total body, as well as regional and total body fat and bone mineral-free lean mass (LM) was assessed by dual-energy X-ray absorptiometry (DXA, Hologic QDR 1000/W). Results. Swimmers, who commenced training at 10.7+/-3.7 yrs (mean+/-SD) and trained for 24.7+/-4.2 hrs per week, had a greater amount of LM (p<0.05), lower fat mass (p<0.001) and percent body fat (9.5 vs 16.2 %, p<0.001) than controls. There was no significant difference between groups for regional or total body BRID, In stepwise multiple regression analysis, body weight was a consistent independent predictor of regional and total body BMD, Conclusions. These results suggest that long-term swimming is not an osteogenic mode of training in college-aged males. This supports our previous findings in young female swimmers who displayed no bone mass benefits despite long-standing athletic training.
Resumo:
To investigate the influence of physical activity on bone mineral accrual during the adolescent years, we analyzed 6 years of data from 53 girls and 60 boys. Physical activity, dietary intakes, and anthropometry were measured every 6 months and dual-energy X-ray absorptiometry scans of the total body (TB), lumbar spine (LS), and proximal femur (Hologic 2000, array mode) were collected annually. Distance and velocity curves for height and bone mineral content (BMC) were fitted for each child at several skeletal sites using a cubic spline procedure, from which ages at peak height velocity (PHV) and peak BMC velocity (PBMCV) were identified. A mean age- and gender-specific standardized activity (Z) score was calculated for each subject based on multiple yearly activity assessments collected up until age of PHV. This score was used to identify active (top quartile), average (middle 2 quartiles), or inactive (bottom quartile) groups. Two-way analysis of covariance, with height and weight at PHV controlled for, demonstrated significant physical activity and gender main effects (but no interaction) for PBMCV, for BMC accrued for 2 years around peak velocity, and for BMC at 1 year post-PBMCV for the TB and femoral neck and for physical activity but not gender at the LS (all p < 0.05). Controlling for maturational and size differences between groups, we noted a 9% and 17% greater TB BMC for active boys and girls, respectively, over their inactive peers 1 year after the age of PBMCV. We also estimated that, on average, 26% of adult TB bone mineral was accrued during the 2 years around PBMCV.
Resumo:
Lengths of silastic tubing were inserted into the peritoneal cavity of rats or rabbits. By two weeks the free-floating implants had become covered by a capsule consisting of several layers of macrophage-derived myofibroblasts and collagen matrix overlaid by a single layer of mesothelial cells. The tubing was removed from the harvested implant and the tissue everted. This now resembled an artery with an inner lining of mesothelial cells (the intima), a media of myofibroblasts, and an outer collagenous adventitia. The tube of living tissue was grafted by end-to-end anastomoses into the transected carotid artery or abdominal aorta of the same animal in which the tissue had been grown, where it remained parent for four months and developed structures resembling elastic lamellae, The myofibroblasts developed a high volume fraction of myofilaments and became responsive to contractile and relaxing agents similar to smooth muscle cells of the adjacent artery wall.
Resumo:
To examine the source of smooth muscle-like cells during vascular healing, C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10(6) nucleated bone marrow cells from congenic (Ly 5.1) male donors. Successful repopulation (88.4 +/- 4.9%) by donor marrow was demonstrated in the female mice by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody after 4 weeks. The arteries of the female mice were then subjected to two types of insult: (1) The iliac artery was scratch-injured by 5 passes of a probe causing severe medial damage. After 4 weeks, the arterial lumen was obliterated by a cell-rich neointima, with cells containing a smooth muscle actin present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y-chromosome-specific probe. (2) In an organized arterial thrombus formed by inserting an 8-0 silk suture into the left common carotid artery, donor cells staining with alpha smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage, Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair. Copyright (C) 2001 S. Karger AG, Basel.
Resumo:
Two factors generally reported to influence bone density are body composition and muscle strength. However, it is unclear if these relationships are consistent across race and sex, especially in older persons. If differences do exist by race and/or sex, then strategies to maintain bone mass or minimize bone loss in older adults may need to be modified accordingly. Therefore, we examined the independent effects of bone mineral-free lean mass (LM), fat mass (FM), and muscle strength on regional and whole body bone mineral density (BMD) in a cohort of 2619 well-functioning older adults participating in the Health, Aging, and Body Composition (Health ABC) Study with complete measures. Participants included 738 white women, 599 black women, 827 white men, and 455 black men aged 70-79 years. BMD (g/cm(2)) of the femoral neck, whole body, upper and lower limb, and whole body and upper limb bone mineral-free LM and FM was assessed by dual-energy X-ray absorptiometry (DXA). Handgrip strength and knee extensor torque were determined by dynamometry. In analyses stratified by race and sex and adjusted for a number of confounders, LM was a significant (p < 0.001) determinant of BMD, except in white women for the lower limb and whole body. In women, FM also was an independent contributor to BMD at the femoral neck, and both PM and muscle strength contributed to limb BMD. The following were the respective Beta-weights (regression coefficients for standardized data, Std beta) and percent difference in BMD per unit (7.5 kg) LM: femoral neck, 0.202-0.386 and 4.7-6.9 %; lower limb,.0.209-0.357 and 2.9-3.5%; whole body, 0.239-0.484 and 3.0-4.7 %; and upper limb (unit = 0.5 kg), 0.231-0.407 and 3.1-3.4%. Adjusting for bone size (bone mineral apparent density [BMAD]) or body size BMD/height) diminished the importance of LM, and the contributory effect of FM became more pronounced. These results indicate that LM and FM were associated with bone mineral depending on the bone site and bone index used. Where differences did occur, they were primarily by sex not race. To preserve BMD, maintaining or increasing LM in the elderly would appear to be an appropriate strategy, regardless of race or sex.
Resumo:
To investigate whether there are gender differences in the bone geometry of the proximal femur during the adolescent years we used an interactive computer program ?Hip Strength Analysis? developed by Beck and associates (Beck et al., Invest Radiol. 1990,25:6-18.) to derive femoral neck geometry parameters from DXA bone scans (Hologic 2000, array mode). We analyzed a longitudinal data-set collected on 70 boys and 68 girls over a seven year period. Distance and velocity curves for height were fitted for each child utilizing a cubic spline procedure and the age of peak height velocity (PHV) was determined. To control for maturational differences between children of the same chronological age and between boys and girls, section modulus (Z) an index of bending strength, cross sectional area of bone (CSA), sub-periosteal width (SPW), and BMD values at the neck and shaft of the proximal femur were determined for points on each individual?s curve at the age of PHV and one and two years on either side of peak. To control for size differences, height and weight were introduced as co-variates in the two-way analyses of variance looking at gender over time measured at the maturational age points (-2, -1, age of PHV, +1, +2). The following figure presents the results of the analyses on two variables, BMD and Z at neck and shaft regions:After the age of peak linear growth (PHV), independent of body size, there was a gender difference in BMD at the shaft but not at the neck. Section modulus at both sites indicated that male bones became significantly stronger after PHV. Underlying these maturational changes, male bones became wider (SPW) after PHV in both the neck and shaft and enclosed more material (CSA) at all maturational age points at both regions. These results call into question the emphasis on using BMD as a measure of skeletal integrity in growing children
Resumo:
The origin of smooth muscle cells involved in vascular healing was examined. Eighteen C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10(6) bone nucleated marrow cells from congenic (Ly 5.1) male donors. Successful repopulation by donor marrow was demonstrated after 4 weeks by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody. The iliac artery of six of the chimeric mice was scratch-injured by five passes of a probe, causing severe medial damage. After 4 weeks the arterial lumen was obliterated by a cell-rich neointima, with alpha-smooth muscle actin-containing cells present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y chromosome-specific probe. An organized arterial thrombus was formed in the remaining 12 chimeric mice by inserting an 8.0 silk suture into the left common carotid artery. Donor cells staining with alpha-smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage. Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair.