976 resultados para BIOCHEMICAL OXYGEN-DEMAND
Resumo:
This study presents the results of the degradation of the pesticide atrazine using electrochemical and photo-assisted electrochemical degradation techniques using SnO(2)-containing electrode of nominal composition electrodes of composition Ti/Ru(x)Sni-(x)O(2) (where X = 0.10, 0.15, 0.20, 0.25 and 0.30). The materials were characterized ex situ and in situ in order to correlate the observed atrazine removal rates with electrode morphology/composition. The results obtained demonstrate the effectiveness of the photo-assisted electrochemical degradation. Using purely electrochemical methods the rate of atrazine removal is almost zero at all the electrodes studied. However, the application of photo-assisted degradation results in almost complete atrazine removal in 1 h of electrolysis. The efficiency of atrazine degradation does not seem to be greatly affected by the electrode material or by SnO(2) content, but the overall COD removal is dependent on the SnO(2) content. Overall, the SnO(2)-containing electrodes do not reach the level of COD removal (maximum similar to 21%) seen for the Ti/Ru(0.3)Ti(0.2)O(2) electrode. An interesting correlation between the morphology factor (phi) and chemical oxygen demand removal is observed. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present study, photo-assisted electrochemical degradation of real textile wastewater was performed. Degradation assays were performed at constant current (40 mA cm(-2)) in a combined electro/photochemical flow-cell using a Ti/Ru(0.3)Ti(0.7)O(2) DSA(R) type electrode. The results show that the method is capable of removing color and chemical oxygen demand (COD) from the effluent. Additionally, the effect of initial pH and type of supporting electrolyte (Na(2)SO(4) or NaCl) was investigated. The principal figures of merit used in this study were COD removal and color removal (605 nm). The results show that up to 72% color and up to 59% COD removal in 120 min is possible under the operating conditions employed. Studies of the phytotoxicity of the wastewater before and after the photo-assisted degradation assays are also presented and the results demonstrate that the toxicity of the effluent is dependent on the length of electrolysis time and the treatment procedure employed.
Resumo:
The current study examined spatial-temporal modifications and water quality through chemical and biotic indicators during both dry (January, February and November 2006) and wet seasons (March to June 2006). This study was carried out in Armando Ribeiro Gonçalves Reservoir, RN, Canal do Pataxó and after the water station treatment (WST). The physical-chemical parameters were measured in situ and inorganic nutrients, chlorophyll a and Free Oxygen Demand (FOD) were analyzed in laboratory conditions. Quali quantitative analyses of phytoplankton were carried out utilizing Sedgwick-Rafter camera. Results indicate that DQO concentrations were low. FOD concentrations in the reservoir were comparatively higher in the dry season (5.21 mgL-1; 5.64 mgL-1 e 6.05 mgL-1) in relation to the wet season (4.52 mgL-1; 4.12 mgL-1 e 4.92 mgL-1), in surface, intermediate and bottom waters, respectively. FOD values were inferior to 1.0mgL-1in both Canal do Pataxó and after WST, which is considered adequate for public use reservoirs. Although FOD concentrations were low, Armando Ribeiro Gonçalves Reservoir, Canal do Pataxó and WST were classified as euthophizied, mesotrophic ad oligotrophic, respectively, considering the Index of Trophic State Criteria. Chlorophyll a concentrations in the study reservoir were higher in the surface (199.2 µgL-1) during the wet season, whereas in Canal do Pataxó concentrations decreased from 1.56 µgL-1 to 0.028 µgL-1, and after WST values were low (0.059 µgL-1). Dominance of cianobacterias, such as Planktotrhix agardhii (dry season) and Microcystis sp (wet season) was registered in all three areas. In the reservoir and Canal do Pataxó, density of cianobacterias, such as P. agardhii and Microcistys sp., was superior to the values allowed by the Health ministry (HM). However, after WST, density values of cianobacteria were inferior to values established by the HM
Resumo:
As macrófitas, apesar da enorme importância na dinâmica do ambiente aquático, quando formam extensas e densas colonizações, promovem uma série de prejuízos ao ambiente e aos usos múltiplos dos reservatórios. Nessas situações, há necessidade de redução de seu tamanho populacional, seja reduzindo as condições favoráveis ao crescimento, seja por meio do controle direto das plantas. Dentre as macrófitas aquáticas que promovem esses tipos de problema, o aguapé (Eichhornia crassipes) é considerada a mais importante. Seu controle é praticado em todo o mundo. O diquat tem sido bastante utilizado para o controle desta planta, em razão de seu baixo custo, eficácia, rapidez de controle e baixa toxicidade no ambiente aquático. O objetivo do presente trabalho foi avaliar os possíveis impactos causados pelo controle de Eichhornia crassipes sobre algumas características de qualidade da água em mesocosmos. Para isso, cinco situações experimentais foram estudadas: CPCH - mesocosmo colonizado por aguapé, o qual foi controlado pela aplicação do herbicida diquat; CPCG - mesocosmo colonizado por aguapé, o qual foi morto por congelamento; CPSH - mesocosmo colonizado com aguapé, sem controle; SPCH - mesocosmo sem macrófitas e com aplicação de diquat na superfície da água; e SPSH - mesocosmo sem macrófitas aquáticas e sem aplicação. O herbicida diquat foi utilizado na dose de 7,0 L da formulação comercial Reward/ha. A temperatura foi mais elevada nos mesocosmos sem plantas, devido à maior incidência de raios solares na coluna d'água. As concentrações de oxigênio dissolvido foram menores nos mesocosmos colonizados pelo aguapé e também tiveram rápida queda após o controle das plantas tanto com diquat como por congelamento. O pH da água foi maior nos mesocosmos sem a cobertura da macrófita. Os valores de sólidos totais dissolvidos (STD) e de condutividade elétrica foram maiores nos tratamentos com morte por congelamento e pelo diquat e em mesocosmos colonizados sem controle da macrófita. Esse efeito pode ser devido à presença de material orgânico em suspensão e à maior concentração de nutrientes presentes na água. Comparando os mesocosmos sem plantas, sem e com a aplicação de diquat na superfície da água, os valores das características avaliadas foram estatisticamente similares, levando à conclusão de que as alterações observadas nos fatores analisados decorrem principalmente da decomposição das plantas.
Resumo:
Um isolado de Fusarium graminearum estudado na UNESP/Campus de Jaboticabal, onde foi comprovada sua eficácia no controle de Egeria densa e E. najas, macrófitas aquáticas submersas. Para estudar o efeito de diferentes concentrações do inóculo na severidade de doença, foram conduzidos experimentos em incubadoras para BOD, com concentrações variando em um décimo, de 0,1 até 1,4 g/l de arroz moído colonizado com F. graminearum. Para verificar os possíveis efeitos da idade da planta sobre a severidade de doença, plantas com, no mínimo 35 cm, de comprimento foram excisadas em segmentos correspondentes às idades de crescimento. Os tratamentos com concentrações de inóculo a partir de 0,5 g/l apresentaram sintomas. Todos os tratamentos inoculados com o fungo, nas concentrações a partir de 0,5 g/l, apresentaram drástica redução na produção de biomassa fresca. Todos os segmentos utilizados como plantas-teste (0 a 32 cm de comprimento) apresentaram suscetibilidade ao fungo. Os ponteiros de plantas de ambas as espécies apresentaram maior severidade de sintomas no sexto e oitavo dias após a inoculação, contudo, os segmentos correspondentes às idades 2 e 3 apresentaram maior redução de biomassa fresca quando inoculadas, apesar de não apresentarem sintomas tão severos quanto a idade 1. Com relação ao ganho de biomassa fresca, as testemunhas apresentaram sempre maior crescimento do que os respectivos tratamentos inoculados, contudo os segmentos correspondentes à idade 4 apresentaram menor ganho de biomassa fresca do que as demais idades.
Resumo:
Reducing body temperature has been found to improve survival not only due to hypoxia (the main focus of this review) but also to ischemia, shock, and many other types of insults. Under these conditions, there is a reduced oxygen delivery to the brain. To compensate the hypoxia, a regulated hypothermia (anapyrexia-Glossary of terms for Thermal Physiology, Commission for Thermal Physiology, 2001) takes place, which has been reported as a beneficial response since the drop in body temperature causes a reduced oxygen demand. The objective of the present article is to review the current knowledge of the mechanisms of hypoxia-induced anapyrexia, focusing on its neurochemical control mainly at the preoptic region of the anterior hypothalamus. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The great diversity of the textile industries activities causes the formation of wastewaters with high complex characteristics during the productive process, according to the industrial process used. The principal aim of the present work is the characterization of the wastewater from the textile industry that process the indigo, located in the Industrial District of Natal-RN, to know the contaminante load of each stage of the process and the framing of the wastewater with the standards of act of receiving of the System of Treatment of Wastewater of the Industrial District of Natal-RN SITEL-DIN, operated for the Company of Waters and Sewers of the RN CAERN. It was analyzed the following properties and pollutants agents: temperature; pH; alcalinity; color; COD (Chemical Oxygen Demand); total and suspended solids; heavy metals, thermotolerants coliformes, turbidity, dissolved oxygen and electrical conductivity. As conclusion it is distinguished that the wastewater did not get resulted satisfactory, according to comparisons with other sources, in only three parameters: turbidity, dissolved oxygen and electrical conductivity, however none of these parameters is criteria of acts of receiving of the SITEL-DIN,therefore the wastewater if finds inside of normality. After the analysis of the obtained results it was verified that SITEL-DIN is indispensable for completing the wastewater treatment
Resumo:
Photo-oxidation processes of toxic organic compounds have been widely studied. This work seeks the application of the photo-Fenton process for the degradation of hydrocarbons in water. The gasoline found in the refinery, without additives and alcohol, was used as the model pollutant. The effects of the concentration of the following substances have been properly evaluated: hydrogen peroxide (100-200 mM), iron ions (0.5-1 mM) and sodium chloride (200 2000 ppm). The experiments were accomplished in reactor with UV lamp and in a falling film solar reactor. The photo-oxidation process was monitored by measurements of the absorption spectra, total organic carbon (TOC) and chemical oxygen demand (COD). Experimental results demonstrated that the photo-Fenton process is feasible for the treatment of wastewaters containing aliphatic hydrocarbons, inclusive in the presence of salts. These conditions are similar to the water produced by the petroleum fields, generated in the extraction and production of petroleum. A neural network model of process correlated well the observed data for the photooxidation process of hydrocarbons
Resumo:
In wastewater treatment, activated sludge systems have been a technology widely applied as secondary treatment. During this step, which has a strong biological aspect, it is necessary to introduce oxygen supply for the maintenance of metabolic activity of the bacteria through the aerators. Aeration devices are responsible for most of the energy consumption in this stage. In this background, the influence of three aeration intensities (atmospheric air flow 3.5, 7.0 and 10.5 L.min-1) and the concentration of dissolved oxygen (DO) on the dimension of activated sludge flocs as well as on the efficiency of organic matter removal were assessed using a traditional activated sludge system which was fed with synthetic domestic wastewater. Samples were taken weekly from the three units that make up the system feed, aeration and storage tank in order to verify the Chemical Oxygen Demand (COD). It was established the process efficiency through a comparison between the initial and final COD. Besides the parameters already mentioned, this monitoring work on activated sludge batch system was also observed by Mixed Liquor Suspend Solids (MLSS), Volatile Suspend Solids (VSS), pH and temperature measures. The results have showed a maximum removal efficiency around 75% in the first aeration sequence and approximately 85% for the second and third one. For the first aeration, the DO concentration remained higher than 3.0 mg.L-1 and a diameter range from 10 to 60 μm was observed. In the second e third sequence, the DO concentration remained higher than 4.0 mg.L-1 with a diameter range of 10 until 200 μm. Although the sequence 1 and 2 have presented similar performances for organic matter removal, the sequence 2 promoted a regular floc size distribution and with lower values of Sludge Volumetric Index (SVI) meaning a better flocculating ability. In addition, the results reaffirmed what the literature has reported: higher DO concentrations produce flocs with greater dimensions
Resumo:
Textile industry deals with a high diversity of processes and generation of wastewaters with a high content of pollutant material. Before being disposed of in water bodies, a pre-treatment of the effluent is carried out, which is sometimes ineffective. In order to be properly treated, physical and chemical properties of the effluent must be known, as well as the pollutant agents that might be present in it. This has turned out to be a great problem in the textile industry, for there is a variety of processes and the pollutant load is very diversified. The characterization of the effluent allows the identification of most critical points and, as a consequence, the most appropriate treatment procedure to be employed, may be chosen. This study presents the results obtained after characterizing the effluent of a textile industry that comprises knitting, dyeing and apparel sections, processing mainly polyester/cotton articles. In this work, twenty samples of the effluent were collected, and related to the changes in production. From the results, a statistical evaluation was applied, determined in function of the rate of flow. The following properties and pollutants agents were quantitatively analysed: temperature; pH; sulfides; chlorine; alcalinity; chlorides; cianides; phenols; color; COD (Chemical Oxygen Demand); TOC (Total Organic Carbon); oil and grease; total, fixed and volatile solids; dissolved, fixed and volatile solids; suspended, fixed and volatile solids; setteable solids and heavy metals such as cadmium, copper, lead, chromium, tin, iron, zinc and nickel. Analyses were carried out according to ABNT NBR 13402 norm, based upon Standard Methods for the Examination of Water and Wastewater. As a consequence, a global treatment proposal is presented, involving clean production practices as contaminant load reducer, followed by conventional (biological) treatment
Resumo:
Petroleum Refinery wastewaters (PRW) have hart-to-degrade compounds, such as: phenols, ammonia, cyanides, sulfides, oils and greases and the mono and polynuclear aromatic hydrocarbons: benzene, toluene and xylene (BTX), acenaphthene, nitrobenzene and naphtalene. It is known that the microrganisms activity can be reduced in the presence of certain substances, adversely affecting the biological process of wastewater treatment. This research was instigated due the small number of studies regarding to this specific topic in the avaiable literature. This body of work ims to evaluate the effect of toxic substances on the biodegradability of the organic material found in PRW. Glucose was chosen as the model substrate due to its biodegradable nature. This study was divided into three parts: i) a survey of recalcitants compounds and the removal of phenol by using both biological and photochemical-biological processes; ii) biomass aclimation and iii) evaluation of the inhibitory effect certain compounds have on glucose biodegradation. The phenol degradation experiments were carried out in an activity sludge system and in a photochemical reactor. The results showed the photochemical-biological process to be more effective on phenol degradation, suggesting the superioruty of a combined photochemical-biological treatment when compared with a simple biological process for phenol removal from industry wastewaters. For the acclimation step, was used an activated sludge from industrial wastewaters. A rapid biomass aclimation to a synthetic solution composed of the main inhibitory compouns fpund in a PRW was obtained using the following operation condition: (pH = 7,0; DO ≥ 2,0 mg/L; RS = 20 days e qH = 31,2 and 20,4 hours), The last part was consisted of using respirometry evaluation toxicity effects of selected compounds over oxygen uptake rate to adaptated and non adaptated biomass in the presence of inhibitory compounds. The adaptated sludge showed greater degration capacity, with lower sensibility to toxic effects. The respirometry has proved to be very practical, as the techiniques used were simple and rapid, such as: Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), and Volatile Suspended Solids (VSS). Using the latter it is possible to perform sludge selection to beggingthe process; thus allowing its use for aerobic treatment system`s behacior prediction
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, electrochemical technology was used to treat synthetic wastewater containing Methyl Red (MR) and Blue Novacron (BN) by anodic oxidation using anodes platinum (Pt) and real samples of textile effluents using DDB anodes and platinum (Pt). The removal of color from the galvanostatic electrolysis of synthetic wastewater MR and BN, and the actual sample has been observed under different conditions (different current densities and temperature variation). The investigation of these parameters was performed in order to establish the best conditions for removal of color and chemical oxygen demand (BOD). According to the results obtained in this study, the electrochemical oxidation processes suitable for the degradation process of color and COD in wastewater containing such textile dyes, because the electrocatalytic properties of Pt and BDD anodes consumption energy during the electrochemical oxidation of synthetic solutions AN and MR and real sample, mainly depend on the operating parameters of operation, for example, the synthetic sample of MR, energy consumption rose from 42,00kWhm-3 in 40 mAcm-2 and 25 C to 17,50 kWhm-3 in 40mAcm-2 and 40 C, from the BN went 17,83 kWhm-3 in 40mAcm and 40°C to 14,04 kWhm- 3 in 40mAcm-2 and 40 C (data estimated by the volume of treated effluent). These results clearly indicate the applicability of electrochemical treatment for removing dyes from synthetic solutions and real industrial effluents
Resumo:
Rubrivivax gelatinosus was grown in Pfennig's synthetic medium (PM) and in treated wastewater from poultry slaughterhouse (TW) to assess growth profiles for biomass production. Cultures inoculated at 1% (v/v) were grown under anaerobiosis at 30 +/- 2 degrees C and 1400 200 lux for 12 days. Regular absorbance curves for R. gelatinosus were found both on PM and TW. on PM, the highest dry weight of biomass, 0.39 g L-1. was achieved in the 216-h culture and the highest specific growth rate of 0.2960 h(-1) occurred in the 24-h culture. on TW, the highest biomass of 0.57 g L-1 was also obtained in the 216-h culture and the highest specific growth rate, 0.1970 h(-1), was achieved in the 48-h culture. For productivity and chemical oxygen demand investigations, the cultivation was accomplished in the TW under anaerobiosis at 32 +/- 2 degrees C and 4000 +/- 500 lux, for 10 days. Productivity was 0.085 g biomass (d.w.) L-1 day(-1), with a COD decrease of 91%. (c) 2007 Elsevier Ltd. All rights reserved.