657 resultados para BIFURCATION
Resumo:
It is generally assumed that the variability of neuronal morphology has an important effect on both the connectivity and the activity of the nervous system, but this effect has not been thoroughly investigated. Neuroanatomical archives represent a crucial tool to explore structure–function relationships in the brain. We are developing computational tools to describe, generate, store and render large sets of three–dimensional neuronal structures in a format that is compact, quantitative, accurate and readily accessible to the neuroscientist. Single–cell neuroanatomy can be characterized quantitatively at several levels. In computer–aided neuronal tracing files, a dendritic tree is described as a series of cylinders, each represented by diameter, spatial coordinates and the connectivity to other cylinders in the tree. This ‘Cartesian’ description constitutes a completely accurate mapping of dendritic morphology but it bears little intuitive information for the neuroscientist. In contrast, a classical neuroanatomical analysis characterizes neuronal dendrites on the basis of the statistical distributions of morphological parameters, e.g. maximum branching order or bifurcation asymmetry. This description is intuitively more accessible, but it only yields information on the collective anatomy of a group of dendrites, i.e. it is not complete enough to provide a precise ‘blueprint’ of the original data. We are adopting a third, intermediate level of description, which consists of the algorithmic generation of neuronal structures within a certain morphological class based on a set of ‘fundamental’, measured parameters. This description is as intuitive as a classical neuroanatomical analysis (parameters have an intuitive interpretation), and as complete as a Cartesian file (the algorithms generate and display complete neurons). The advantages of the algorithmic description of neuronal structure are immense. If an algorithm can measure the values of a handful of parameters from an experimental database and generate virtual neurons whose anatomy is statistically indistinguishable from that of their real counterparts, a great deal of data compression and amplification can be achieved. Data compression results from the quantitative and complete description of thousands of neurons with a handful of statistical distributions of parameters. Data amplification is possible because, from a set of experimental neurons, many more virtual analogues can be generated. This approach could allow one, in principle, to create and store a neuroanatomical database containing data for an entire human brain in a personal computer. We are using two programs, L–NEURON and ARBORVITAE, to investigate systematically the potential of several different algorithms for the generation of virtual neurons. Using these programs, we have generated anatomically plausible virtual neurons for several morphological classes, including guinea pig cerebellar Purkinje cells and cat spinal cord motor neurons. These virtual neurons are stored in an online electronic archive of dendritic morphology. This process highlights the potential and the limitations of the ‘computational neuroanatomy’ strategy for neuroscience databases.
Resumo:
Transport and deposition of charged inhaled aerosols in double planar bifurcation representing generation three to five of human respiratory system has been studied under a light activity breathing condition. Both steady and oscillatory laminar inhalation airflow is considered. Particle trajectories are calculated using a Lagrangian reference frame, which is dominated by the fluid force driven by airflow, gravity force and electrostatic forces (both of space and image charge forces). The particle-mesh method is selected to calculate the space charge force. This numerical study investigates the deposition efficiency in the three-dimensional model under various particle sizes, charge values, and inlet particle distribution. Numerical results indicate that particles carrying an adequate level of charge can improve deposition efficiency in the airway model.
Resumo:
Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled flight. The aim of this work is to construct a robust closed-loop control that optimally extends the stable and decoupled flight envelope. For the study of these systems nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and investigate control effects on dynamic behavior. In this work linear feedback control designs calculated by eigenstructure assignment methods are investigated for a simple aircraft model at a fixed flight condition. Bifurcation analysis in conjunction with linear control design methods is shown to aid control law design for the nonlinear system.
Resumo:
Mean field models (MFMs) of cortical tissue incorporate salient, average features of neural masses in order to model activity at the population level, thereby linking microscopic physiology to macroscopic observations, e.g., with the electroencephalogram (EEG). One of the common aspects of MFM descriptions is the presence of a high-dimensional parameter space capturing neurobiological attributes deemed relevant to the brain dynamics of interest. We study the physiological parameter space of a MFM of electrocortical activity and discover robust correlations between physiological attributes of the model cortex and its dynamical features. These correlations are revealed by the study of bifurcation plots, which show that the model responses to changes in inhibition belong to two archetypal categories or “families”. After investigating and characterizing them in depth, we discuss their essential differences in terms of four important aspects: power responses with respect to the modeled action of anesthetics, reaction to exogenous stimuli such as thalamic input, and distributions of model parameters and oscillatory repertoires when inhibition is enhanced. Furthermore, while the complexity of sustained periodic orbits differs significantly between families, we are able to show how metamorphoses between the families can be brought about by exogenous stimuli. We here unveil links between measurable physiological attributes of the brain and dynamical patterns that are not accessible by linear methods. They instead emerge when the nonlinear structure of parameter space is partitioned according to bifurcation responses. We call this general method “metabifurcation analysis”. The partitioning cannot be achieved by the investigation of only a small number of parameter sets and is instead the result of an automated bifurcation analysis of a representative sample of 73,454 physiologically admissible parameter sets. Our approach generalizes straightforwardly and is well suited to probing the dynamics of other models with large and complex parameter spaces.
Resumo:
A recently proposed mean-field theory of mammalian cortex rhythmogenesis describes the salient features of electrical activity in the cerebral macrocolumn, with the use of inhibitory and excitatory neuronal populations (Liley et al 2002). This model is capable of producing a range of important human EEG (electroencephalogram) features such as the alpha rhythm, the 40 Hz activity thought to be associated with conscious awareness (Bojak & Liley 2007) and the changes in EEG spectral power associated with general anesthetic effect (Bojak & Liley 2005). From the point of view of nonlinear dynamics, the model entails a vast parameter space within which multistability, pseudoperiodic regimes, various routes to chaos, fat fractals and rich bifurcation scenarios occur for physiologically relevant parameter values (van Veen & Liley 2006). The origin and the character of this complex behaviour, and its relevance for EEG activity will be illustrated. The existence of short-lived unstable brain states will also be discussed in terms of the available theoretical and experimental results. A perspective on future analysis will conclude the presentation.
Resumo:
Nonlinear stability theorems are presented for axisymmetric vortices under the restriction that the disturbance is independent of either the azimuthal or the axial coordinate. These stability theorems are then used, in both cases, to derive rigorous upper bounds on the saturation amplitudes of instabilities. Explicit examples of such bounds are worked out for some canonical profiles. The results establish a minimum order for the dependence of saturation amplitude on supercriticality, and are thereby suggestive as to the nature of the bifurcation at the stability threshold.
Resumo:
A mathematical model incorporating many of the important processes at work in the crystallization of emulsions is presented. The model describes nucleation within the discontinuous domain of an emulsion, precipitation in the continuous domain, transport of monomers between the two domains, and formation and subsequent growth of crystals in both domains. The model is formulated as an autonomous system of nonlinear, coupled ordinary differential equations. The description of nucleation and precipitation is based upon the Becker–Döring equations of classical nucleation theory. A particular feature of the model is that the number of particles of all species present is explicitly conserved; this differs from work that employs Arrhenius descriptions of nucleation rate. Since the model includes many physical effects, it is analyzed in stages so that the role of each process may be understood. When precipitation occurs in the continuous domain, the concentration of monomers falls below the equilibrium concentration at the surface of the drops of the discontinuous domain. This leads to a transport of monomers from the drops into the continuous domain that are then incorporated into crystals and nuclei. Since the formation of crystals is irreversible and their subsequent growth inevitable, crystals forming in the continuous domain effectively act as a sink for monomers “sucking” monomers from the drops. In this case, numerical calculations are presented which are consistent with experimental observations. In the case in which critical crystal formation does not occur, the stationary solution is found and a linear stability analysis is performed. Bifurcation diagrams describing the loci of stationary solutions, which may be multiple, are numerically calculated.
Resumo:
We consider a scattering problem for a nonlinear disordered lattice layer governed by the discrete nonlinear Schrodinger equation. The linear state with exponentially small transparency, due to the Anderson localization, is followed for an increasing nonlinearity, until it is destroyed via a bifurcation. The critical nonlinearity is shown to decay with the lattice length as a power law. We demonstrate that in the chaotic regimes beyond the bifurcation the field is delocalized and this leads to a drastic increase of transparency. Copyright (C) EPLA, 2008
Resumo:
A scalable method for the preparation of 4,5-disubstituted thiazoles and imidazoles as distinct regioisomeric products using a modular flow microreactor has been devised. The process makes use of microfluidic reaction chips and packed immobilized-reagent columns to effect bifurcation of the reaction pathway.
Resumo:
A direct comparative study on the creep-recovery behavior of conventional MR fluids is carried out using magnetorheometry and particle-level simulations. Two particle concentrations are investigated (ϕ=0.05 and 0.30) at two different magnetic field strengths (53 kA•m-1 and 173 kA•m-1) in order to match the yield stresses developed in both systems for easier comparison. Simulations are mostly started with random initial structures with some additional tests of using preassembled single chains in the low concentration case. Experimental and simulation data are in good qualitative agreement. The results demonstrate three regions in the creep curves: i) In the initial viscoelastic region, the chain-like (at ϕ=0.05) or percolated three-dimensional network (at ϕ=0.30) structures fill up the gap and the average cluster size remains constant; ii) Above a critical strain of 10 %, in the retardation region, these structures begin to break and rearrange under shear. At large enough imposed stress values, they transform into thin sheet-like or thick lamellar structures, depending on the particle concentration; iii) Finally in the case of larger strain values either the viscosity diverges (at low stress values) or reaches a constant low value (at high stress values), showing a clear bifurcation behavior. For stresses below the bifurcation point the MR fluid is capable to recover the strain by a certain fraction. However, no recovery is observed for large stress values.
Resumo:
In the event of a volcanic eruption the decision to close airspace is based on forecast ash maps, produced using volcanic ash transport and dispersion models. In this paper we quantitatively evaluate the spatial skill of volcanic ash simulations using satellite retrievals of ash from the Eyja allajökull eruption during the period from 7 to 16 May 2010. We find that at the start of this period, 7–10 May, the model (FLEXible PARTicle) has excellent skill and can predict the spatial distribution of the satellite-retrieved ash to within 0.5∘ × 0.5∘ latitude/longitude. However, on 10 May there is a decrease in the spatial accuracy of the model to 2.5∘× 2.5∘ latitude/longitude, and between 11 and 12 May the simulated ash location errors grow rapidly. On 11 May ash is located close to a bifurcation point in the atmosphere, resulting in a rapid divergence in the modeled and satellite ash locations. In general, the model skill reduces as the residence time of ash increases. However, the error growth is not always steady. Rapid increases in error growth are linked to key points in the ash trajectories. Ensemble modeling using perturbed meteorological data would help to represent this uncertainty, and assimilation of satellite ash data would help to reduce uncertainty in volcanic ash forecasts.
Resumo:
In this paper we consider a dissipative damped wave equation with nonautonomous damping of the form u(tt) + beta(t)u(t) - Delta u + f(u) (1) in a bounded smooth domain Omega subset of R(n) with Dirichlet boundary conditions, where f is a dissipative smooth nonlinearity and the damping beta : R -> (0, infinity) is a suitable function. We prove, if (1) has finitely many equilibria, that all global bounded solutions of (1) are backwards and forwards asymptotic to equilibria. Thus, we give a class of examples of nonautonomous evolution processes for which the structure of the pullback attractors is well understood. That complements the results of [Carvalho & Langa, 2009] on characterization of attractors, where it was shown that a small nonautonomous perturbation of an autonomous gradient-like evolution process is also gradient-like. Note that the evolution process associated to (1) is not a small nonautonomous perturbation of any autonomous gradient-like evolution processes. Moreover, we are also able to prove that the pullback attractor for (1) is also a forwards attractor and that the rate of attraction is exponential.
Resumo:
A theory of bifurcation equivalence for forced symmetry breaking bifurcation problems is developed. We classify (O(2), 1) problems of corank 2 of low codimension and discuss examples of bifurcation problems leading to such symmetry breaking.
Resumo:
We study the Fucik spectrum of the Laplacian on a two-dimensional torus T(2). Exploiting the invariance properties of the domain T(2) with respect to translations we obtain a good description of large parts of the spectrum. In particular, for each eigenvalue of the Laplacian we will find an explicit global curve in the Fucik spectrum which passes through this eigenvalue; these curves are ordered, and we will show that their asymptotic limits are positive. On the other hand, using a topological index based on the mentioned group invariance, we will obtain a variational characterization of global curves in the Fucik spectrum; also these curves emanate from the eigenvalues of the Laplacian, and we will show that they tend asymptotically to zero. Thus, we infer that the variational and the explicit curves cannot coincide globally, and that in fact many curve crossings must occur. We will give a bifurcation result which partially explains these phenomena. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we introduce a method to conclude about the existence of secondary bifurcations or isolas of steady state solutions for parameter dependent nonlinear partial differential equations. The technique combines the Global Bifurcation Theorem, knowledge about the non-existence of nontrivial steady state solutions at the zero parameter value and explicit information about the coexistence of multiple nontrivial steady states at a positive parameter value. We apply the method to the two-dimensional Swift-Hohenberg equation. (C) 2011 Elsevier Ltd. All rights reserved.