970 resultados para BACTERIAL LIPASES
Resumo:
Lipases from different sources were immobilized in sodium caseinate/glycerol film and used in the esterification reactions of aliphatic acids with alcohols in the presence of organic solvents. Lipases from Pseudomonas sp and Rhizopus oryzae were selected and the influence of several parameters was analyzed, including: lipase loading, organic solvent polarity, reaction temperature, chain length of alcohol and acid and enzyme/support reuse. For comparison, free enzymes were used under similar experimental conditions.
Resumo:
Amyloid aggregation is linked to a large number of human disorders, from neurodegenerative diseases as Alzheimer"s disease (AD) or spongiform encephalopathies to non-neuropathic localized diseases as type II diabetes and cataracts. Because the formation of insoluble inclusion bodies (IBs) during recombinant protein production in bacteria has been recently shown to share mechanistic features with amyloid self-assembly, bacteria have emerged as a tool to study amyloid aggregation. Herein we present a fast, simple, inexpensive and quantitative method for the screening of potential anti-aggregating drugs. This method is based on monitoring the changes in the binding of thioflavin-S to intracellular IBs in intact Eschericchia coli cells in the presence of small chemical compounds. This in vivo technique fairly recapitulates previous in vitro data. Here we mainly use the Alzheimer"s related beta-amyloid peptide as a model system, but the technique can be easily implemented for screening inhibitors relevant for other conformational diseases simply by changing the recombinant amyloid protein target. Indeed, we show that this methodology can be also applied to the evaluation of inhibitors of the aggregation of tau protein, another amyloidogenic protein with a key role in AD.
Resumo:
Isoamyl butyrate production was investigated using free and immobilized lipases by esterification of butyric acid with isoamyl alcohol in a solvent-free system and in an organic media. Among the enzymes studied, Lipozyme TL IM was found to be the most active catalyst in n-hexane as a solvent. The effects of different solvents and the amount of water added on conversion rates were studied. A maximum conversion yield of 80% in n-hexano at 48 h was obtained under the following conditions: 3 g L-1 of Lipozyme TL IM, 30 ºC, 180 rpm of agitation, isoamyl alcohol to butyric acid molar ratio of 1:1 and acid substrate concentration of 0.06 M.
Resumo:
In this work, TiO2 photocatalysis was used to disinfect domestic wastewaters previously treated by different biological treatment systems: Upward-flow Anaerobic Sludge Blanket (UASB), facultative pond, and duckweed pond. The microorganisms monitored were E. coli, total coliforms, Shigella species, and Salmonella species. Photocatalytic experiments were carried out using two light sources: a solar simulator (UV intensity: 68-70 W m-2) and black-light lamps (BLL UV intensity: 17-20 W m-2). Samples were taken after each treatment stage. Results indicate that bacterial photocatalytic inactivation is affected by characteristics of the effluent, including turbidity, concentration of organic matter, and bacterial concentration, which depend of the type of biological pretreatment previously used.
Resumo:
From the aerial parts of Sidastrum micranthum (A. St.-Hil.) Fryxell (Malvaceae) were isolated m-methoxy-p-hydroxy-benzaldehyde, o-hydroxy-benzoic acid, acacetin, quercetin, 7,4′-Di-O-methylisoscutellarein, genkwanin and tiliroside. These compounds were identified by data analyses of spectroscopic methods. Although acacetin and 7,4′-Di-O-methylisoscutellarein did not display relevant antibacterial activity (MIC = 256 µg/mL), they modulated the activity of antibiotics, i.e. in combination with antibiotics at 64 µg/mL (¼ MIC), a two-fold reduction in the MIC was observed for norfloxacin and ethidium bromide; regarding tetracycline and erythromycin a two-fold reduction in the MIC was observed only with 7,4′-Di-O-methylisoscutellarein.
Resumo:
Filamentous fungi were cultured under solid state fermentation of soybean residues to produce lipases. Enzymes produced by Aspergillus niger esterified oleic and butyric acids in the presence of ethanol, while enzymes produced by Aspergillus fumigatus demonstrated no esterification activity toward lauric acid. In case of A. niger, direct lyophilization of fermented bran led to higher esterification activity. The esterification of oleic acid by enzymes of A. fumigatus was neither influenced by pH adjustment nor by the extraction process. Conversions to ethyl esters were higher after pH adjustment with lyophilized liquid extract of A. niger.
Resumo:
The immobilization of enzymes and microorganisms on solid supports has been developed in recent years. These biocatalysts may be used in organic media allowing their storage and reuse, thus reducing costs of the process. Herein, lipases from various sources were immobilized in agar gel and used as catalysts in the chemo-enzymatic epoxidation of β-caryophyllene. Several experimental parameters, such as the use of different organic solvents including ionic liquids, time, temperature, and agitation rate were evaluated. The mono-epoxide was obtained as a single product. The best result was achieved using immobilized F-AP15 lipase, forming the corresponding β-caryophyllene epoxide at a conversion of 96% in an 8h reaction at 35 ºC.
Resumo:
Enzyme-support strategies are increasingly replacing conventional chemical methods in both laboratories and industries with attributes including efficiency, higher performance and multifarious use, where silica surfaces show potential due to the chemical bonds based on the presence of hydroxyl groups which can be modified with different additives. Surface-modified silica is a novel class of materials capable of improving enzyme stability and reusability that can be applied to support several immobilization techniques. This review describes the use of innovative modified supports to improve the state of enzyme immobilization and provide the industrial sector with new perspectives.
Resumo:
Polysialic acid is a carbohydrate polymer which consist of N-acetylneuraminic acid units joined by alpha2,8-linkages. It is developmentally regulated and has an important role during normal neuronal development. In adults, it participates in complex neurological processes, such as memory, neural plasticity, tumor cell growth and metastasis. Polysialic acid also constitutes the capsule of some meningitis and sepsis-causing bacteria, such as Escherichia coli K1, group B meningococci, Mannheimia haemolytica A2 and Moraxella nonliquefaciens. Polysialic acid is poorly immunogenic; therefore high affinity antibodies against it are difficult to prepare, thus specific and fast detection methods are needed. Endosialidase is an enzyme derived from the E. coli K1 bacteriophage, which specifically recognizes and degrades polysialic acid. In this study, a novel detection method for polysialic acid was developed based on a fusion protein of inactive endosialidase and the green fluorescent protein. It utilizes the ability of the mutant, inactive endosialidase to bind but not cleave polysialic acid. Sequencing of the endosialidase gene revealed that amino acid substitutions near the active site of the enzyme differentiate the active and inactive forms of the enzyme. The fusion protein was applied for the detection of polysialic acid in bacteria and neuroblastoma. The results indicate that the fusion protein is a fast, sensitive and specific reagent for the detection of polysialic acid. The use of an inactive enzyme as a specific molecular tool for the detection of its substrate represents an approach which could potentially find wide applicability in the specific detection of diverse macromolecules.
Resumo:
The use of organic matter that improves the physical, chemical and biological soil properties has been studied as an inducer of suppressiveness to soilborne plant pathogens. The objective of this work was to evaluate the effect of different sources and concentrations of organic matter on tomato bacterial wilt control. Two commercially available organic composts and freshly cut aerial parts of pigeon pea (Cajanus cajan) and crotalaria (Crotalaria juncea) were incorporated, in concentrations of 10, 20 and 30 % (v/v), into soil infested with Ralstonia solanacearum. The soil with the fresh organic matter of pigeon pea and crotalaria was incubated for 30 and 60 days before planting. Tomato seedlings of cv. Santa Clara were transplanted into polyethylene bags with 3 kg of the planting substrate (infested soil + organic matter). The wilting symptoms and percentage of flowering plants were evaluated for 45 days. All evaluated concentrations with incorporation and incubation for 30 days of aerial parts of pigeon pea and crotalaria controlled 100% tomato bacterial wilt. With 60 days of incubation, only the 10 % concentration of pigeon pea and crotalaria did not control the disease. These results suggest that soil incorporation of fresh aerial parts of pigeon pea and crotalaria is an effective method for bacterial wilt control.
Resumo:
CBS domains are ~60 amino acid tandemly repeated regulatory modules forming a widely distributed domain superfamily. Found in thousands of proteins from all kingdoms of life, CBS domains have adopted a variety of functions during evolution, one of which is regulation of enzyme activity through binding of adenylate-containing compounds in a hydrophobic cavity. Mutations in human CBS domain-containing proteins cause hereditary diseases. Inorganic pyrophosphatases (PPases) are ubiquitous enzymes, which pull pyrophosphate (PPi) producing reactions forward by hydrolyzing PPi into phosphate. Of the two nonhomologous soluble PPases, dimeric family II PPases, belonging to the DHH family of phosphoesterases, require a transition metal and magnesium for maximal activity. A quarter of the almost 500 family II PPases, found in bacteria and archaea, contain a 120-250 amino acid N-terminal insertion, comprised of two CBS domains separated in sequence by a DRTGG domain. These enzymes are thus named CBS-PPases. The function of the DRTGG domain in proteins is unknown. The aim of this PhD thesis was to elucidate the structural and functional differences of CBS-PPases in comparison to family II PPases lacking the regulatory insert. To this end, we expressed, purified and characterized the CBS-PPases from Clostridium perfringens (cpCBS-PPase) and Moorella thermoacetica (mtCBS-PPase), the latter lacking a DRTGG domain. Both enzymes are homodimers in solution and display maximal activity against PPi in the presence of Co2+ and Mg2+. Uniquely, the DRTGG domain was found to enable tripolyphosphate hydrolysis at rates similar to that of PPi. Additionally, we found that AMP and ADP inhibit, while ATP and AP4A activate CBSPPases, thus enabling regulation in response to changes in cellular energy status. We then observed substrate- and nucleotide-induced conformational transitions in mtCBS-PPase and found that the enzyme exists in two differentially active conformations, interconverted through substrate binding and resulting in a 2.5-fold enzyme activation. AMP binding was shown to produce an alternate conformation, which is reached through a different pathway than the substrate-induced conformation. We solved the structure of the regulatory insert from cpCBS-PPase in complex with AMP and AP4A and proposed that conformational changes in the loops connecting the catalytic and regulatory domains enable activity regulation. We examined the effects of mutations in the CBS domains of mtCBS-PPase on catalytic activity, as well as, nucleotide binding and inhibition.
Resumo:
OBJECTIVE: to compare the effects of low intensity laser therapy on in vitro bacterial growth and in vivo in infected wounds, and to analyze the effectiveness of the AsGa Laser technology in in vivo wound infections. METHODS: in vitro: Staphylococcus aureus were incubated on blood agar plates, half of them being irradiated with 904 nm wavelength laser and dose of 3J/cm2 daily for seven days. In vivo: 32 male Wistar rats were divided into control group (uninfected) and Experimental Group (Infected). Half of the animals had their wounds irradiated. RESULTS: in vitro: there was no statistically significant variation between the experimental groups as for the source plates and the derived ones (p>0.05). In vivo: there was a significant increase in the deposition of type I and III collagen in the wounds of the infected and irradiated animals when assessed on the fourth day of the experiment (p=0.034). CONCLUSION: low-intensity Laser Therapy applied with a wavelength of 904nm and dose 3J/cm2 did not alter the in vitro growth of S. aureus in experimental groups; in vivo, however, it showed significant increase in the deposition of type I and III collagen in the wound of infected and irradiated animals on the fourth day of the experiment.