952 resultados para Average Entropy
Resumo:
INTRODUCTION: We studied intra-individual and inter-individual variability of two online sedation monitors, BIS and Entropy, in volunteers under sedation. METHODS: Ten healthy volunteers were sedated in a stepwise manner with doses of either midazolam and remifentanil or dexmedetomidine and remifentanil. One week later the procedure was repeated with the remaining drug combination. The doses were adjusted to achieve three different sedation levels (Ramsay Scores 2, 3 and 4) and controlled by a computer-driven drug-delivery system to maintain stable plasma concentrations of the drugs. At each level of sedation, BIS and Entropy (response entropy and state entropy) values were recorded for 20 minutes. Baseline recordings were obtained before the sedative medications were administered. RESULTS: Both inter-individual and intra-individual variability increased as the sedation level deepened. Entropy values showed greater variability than BIS(R) values, and the variability was greater during dexmedetomidine/remifentanil sedation than during midazolam/remifentanil sedation. CONCLUSIONS: The large intra-individual and inter-individual variability of BIS and Entropy values in sedated volunteers makes the determination of sedation levels by processed electroencephalogram (EEG) variables impossible. Reports in the literature which draw conclusions based on processed EEG variables obtained from sedated intensive care unit (ICU) patients may be inaccurate due to this variability. TRIAL REGISTRATION: clinicaltrials.gov Nr. NCT00641563.
Resumo:
The estimation of the average travel distance in a low-level picker-to-part order picking system can be done by analytical methods in most cases. Often a uniform distribution of the access frequency over all bin locations is assumed in the storage system. This only applies if the bin location assignment is done randomly. If the access frequency of the articles is considered in the bin location assignment to reduce the average total travel distance of the picker, the access frequency over the bin locations of one aisle can be approximated by an exponential density function or any similar density function. All known calculation methods assume that the average number of orderlines per order is greater than the number of aisles of the storage system. In case of small orders this assumption is often invalid. This paper shows a new approach for calculating the average total travel distance taking into account that the average number of orderlines per order is lower than the total number of aisles in the storage system and the access frequency over the bin locations of an aisle can be approximated by any density function.
Resumo:
Quantitative EEG (qEEG) has modified our understanding of epileptic seizures, shifting our view from the traditionally accepted hyper-synchrony paradigm toward more complex models based on re-organization of functional networks. However, qEEG measurements are so far rarely considered during the clinical decision-making process. To better understand the dynamics of intracranial EEG signals, we examine a functional network derived from the quantification of information flow between intracranial EEG signals. Using transfer entropy, we analyzed 198 seizures from 27 patients undergoing pre-surgical evaluation for pharmaco-resistant epilepsy. During each seizure we considered for each network the in-, out- and total "hubs", defined respectively as the time and the EEG channels with the maximal incoming, outgoing or total (bidirectional) information flow. In the majority of cases we found that the hubs occur around the middle of seizures, and interestingly not at the beginning or end, where the most dramatic EEG signal changes are found by visual inspection. For the patients who then underwent surgery, good postoperative clinical outcome was on average associated with a higher percentage of out- or total-hubs located in the resected area (for out-hubs p = 0.01, for total-hubs p = 0.04). The location of in-hubs showed no clear predictive value. We conclude that the study of functional networks based on qEEG measurements may help to identify brain areas that are critical for seizure generation and are thus potential targets for focused therapeutic interventions.
Resumo:
We consider the problem of twenty questions with noisy answers, in which we seek to find a target by repeatedly choosing a set, asking an oracle whether the target lies in this set, and obtaining an answer corrupted by noise. Starting with a prior distribution on the target's location, we seek to minimize the expected entropy of the posterior distribution. We formulate this problem as a dynamic program and show that any policy optimizing the one-step expected reduction in entropy is also optimal over the full horizon. Two such Bayes optimal policies are presented: one generalizes the probabilistic bisection policy due to Horstein and the other asks a deterministic set of questions. We study the structural properties of the latter, and illustrate its use in a computer vision application.
Resumo:
Placement of a single-tooth implant should be performed when a patient's facial growth has ceased. In this retrospective observational study, we evaluated if there was a difference in the timing of cessation of craniofacial growth in short, average, and long facial types. Based on the value of the angle between cranial base and mandibular plane (SN/MP angle), three groups comprising 48 subjects with short facial type (SF; SN/MP ≤28°), 77 with average facial type (AF; SN/MP ≥31.5° and ≤34.5°), and 44 with long facial type (LF; SN/MP ≥38°) were selected. Facial growth was assessed on lateral cephalograms taken at 15.4 years of age, and 2, 5, and 10 years later. Variables were considered to be stable when the difference between two successive measurements was less than 1 mm or 1°. We found no difference between facial types in the timing of cessation of facial growth. Depending on the variable, the mean age when variables became stable ranged from 18.0 years (Is-Pal in LF group) to 22.0 years (SN/MP in LF group). However, facial growth continued at the last follow-up in approximately 20% subjects. This study demonstrates that facial type is not associated with the timing of cessation of facial growth.