874 resultados para Automated Hazard Analysis
Resumo:
This paper provides a detailed description of the current Australian e-passport implementation and makes a formal verification using model checking tools CASPER/CSP/FDR. We highlight security issues present in the current e-passport implementation and identify new threats when an e-passport system is integrated with an automated processing systems like SmartGate. Because the current e-passport specification does not provide adequate security goals, to perform a rational security analysis we identify and describe a set of security goals for evaluation of e-passport protocols. Our analysis confirms existing security issues that were previously informally identified and presents weaknesses that exists in the current e-passport implementation.
Resumo:
Faunal vocalisations are vital indicators for environmental change and faunal vocalisation analysis can provide information for answering ecological questions. Therefore, automated species recognition in environmental recordings has become a critical research area. This thesis presents an automated species recognition approach named Timed and Probabilistic Automata. A small lexicon for describing animal calls is defined, six algorithms for acoustic component detection are developed, and a series of species recognisers are built and evaluated.The presented automated species recognition approach yields significant improvement on the analysis performance over a real world dataset, and may be transferred to commercial software in the future.
Resumo:
This paper provides a preliminary analysis of an autonomous uncooperative collision avoidance strategy for unmanned aircraft using image-based visual control. Assuming target detection, the approach consists of three parts. First, a novel decision strategy is used to determine appropriate reference image features to track for safe avoidance. This is achieved by considering the current rules of the air (regulations), the properties of spiral motion and the expected visual tracking errors. Second, a spherical visual predictive control (VPC) scheme is used to guide the aircraft along a safe spiral-like trajectory about the object. Lastly, a stopping decision based on thresholding a cost function is used to determine when to stop the avoidance behaviour. The approach does not require estimation of range or time to collision, and instead relies on tuning two mutually exclusive decision thresholds to ensure satisfactory performance.
Resumo:
Age-related Macular Degeneration (AMD) is one of the major causes of vision loss and blindness in ageing population. Currently, there is no cure for AMD, however early detection and subsequent treatment may prevent the severe vision loss or slow the progression of the disease. AMD can be classified into two types: dry and wet AMDs. The people with macular degeneration are mostly affected by dry AMD. Early symptoms of AMD are formation of drusen and yellow pigmentation. These lesions are identified by manual inspection of fundus images by the ophthalmologists. It is a time consuming, tiresome process, and hence an automated diagnosis of AMD screening tool can aid clinicians in their diagnosis significantly. This study proposes an automated dry AMD detection system using various entropies (Shannon, Kapur, Renyi and Yager), Higher Order Spectra (HOS) bispectra features, Fractional Dimension (FD), and Gabor wavelet features extracted from greyscale fundus images. The features are ranked using t-test, Kullback–Lieber Divergence (KLD), Chernoff Bound and Bhattacharyya Distance (CBBD), Receiver Operating Characteristics (ROC) curve-based and Wilcoxon ranking methods in order to select optimum features and classified into normal and AMD classes using Naive Bayes (NB), k-Nearest Neighbour (k-NN), Probabilistic Neural Network (PNN), Decision Tree (DT) and Support Vector Machine (SVM) classifiers. The performance of the proposed system is evaluated using private (Kasturba Medical Hospital, Manipal, India), Automated Retinal Image Analysis (ARIA) and STructured Analysis of the Retina (STARE) datasets. The proposed system yielded the highest average classification accuracies of 90.19%, 95.07% and 95% with 42, 54 and 38 optimal ranked features using SVM classifier for private, ARIA and STARE datasets respectively. This automated AMD detection system can be used for mass fundus image screening and aid clinicians by making better use of their expertise on selected images that require further examination.
Resumo:
AIM: To assess the cost-effectiveness of an automated telephone-linked care intervention, Australian TLC Diabetes, delivered over 6 months to patients with established Type 2 diabetes mellitus and high glycated haemoglobin level, compared to usual care. METHODS: A Markov model was designed to synthesize data from a randomized controlled trial of TLC Diabetes (n=120) and other published evidence. The 5-year model consisted of three health states related to glycaemic control: 'sub-optimal' HbA1c ≥58mmol/mol (7.5%); 'average' ≥48-57mmol/mol (6.5-7.4%) and 'optimal' <48mmol/mol (6.5%) and a fourth state 'all-cause death'. Key outcomes of the model include discounted health system costs and quality-adjusted life years (QALYS) using SF-6D utility weights. Univariate and probabilistic sensitivity analyses were undertaken. RESULTS: Annual medication costs for the intervention group were lower than usual care [Intervention: £1076 (95%CI: £947, £1206) versus usual care £1271 (95%CI: £1115, £1428) p=0.052]. The estimated mean cost for intervention group participants over five years, including the intervention cost, was £17,152 versus £17,835 for the usual care group. The corresponding mean QALYs were 3.381 (SD 0.40) for the intervention group and 3.377 (SD 0.41) for the usual care group. Results were sensitive to the model duration, utility values and medication costs. CONCLUSION: The Australian TLC Diabetes intervention was a low-cost investment for individuals with established diabetes and may result in medication cost-savings to the health system. Although QALYs were similar between groups, other benefits arising from the intervention should also be considered when determining the overall value of this strategy.
Resumo:
Closed WS2 nanoboxes were formed by topotactic sulfidization of a WO3/WO3 center dot 1/3H(2)O intergrowth precursor. Automated diffraction tomography was used to elucidate the growth mechanism of these unconventional hollow structures. By partial conversion and structural analysis of the products, each of them representing a snapshot of the reaction at a given point in time, the overall reaction can be broken down into a cascade of individual steps and each of them identified with a basic mechanism. During the initial step of sulfidization WO3 center dot 1/3H(2)O transforms into hexagonal WO3 whose surface allows for the epitaxial induction of WS2. The initially formed platelets of WS2 exhibit a preferred orientation with respect to the nanorod surface. In the final step individual layers of WS2 coalesce to form closed shells. In essence, a cascade of several topotactic reactions leads to epitactic induction and formation of closed rectangular hollow boxes made up from hexagonal layers.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
The application of robotics to protein crystallization trials has resulted in the production of millions of images. Manual inspection of these images to find crystals and other interesting outcomes is a major rate-limiting step. As a result there has been intense activity in developing automated algorithms to analyse these images. The very first step for most systems that have been described in the literature is to delineate each droplet. Here, a novel approach that reaches over 97% success rate and subsecond processing times is presented. This will form the seed of a new high-throughput system to scrutinize massive crystallization campaigns automatically. © 2010 International Union of Crystallography Printed in Singapore-all rights reserved.
Resumo:
An automated melanoma diagnosis system, the so-called Skin Polar-probe, was developed to improve the chances of early detection of skin cancers and help save the lives of melanoma victims. The system will offer unique benefits to aid early detection of melanoma - the key to reducing deaths caused by this cancer.
Resumo:
This paper discusses the following key messages. Taxonomy is (and taxonomists are) more important than ever in times of global change. Taxonomic endeavour is not occurring fast enough: in 250 years since the creation of the Linnean Systema Naturae, only about 20% of Earth's species have been named. We need fundamental changes to the taxonomic process and paradigm to increase taxonomic productivity by orders of magnitude. Currently, taxonomic productivity is limited principally by the rate at which we capture and manage morphological information to enable species discovery. Many recent (and welcomed) initiatives in managing and delivering biodiversity information and accelerating the taxonomic process do not address this bottleneck. Development of computational image analysis and feature extraction methods is a crucial missing capacity needed to enable taxonomists to overcome the taxonomic impediment in a meaningful time frame. Copyright © 2009 Magnolia Press.
Resumo:
We recorded echolocation calls from 14 sympatric species of bat in Britain. Once digitised, one temporal and four spectral features were measured from each call. The frequency-time course of each call was approximated by fitting eight mathematical functions, and the goodness of fit, represented by the mean-squared error, was calculated. Measurements were taken using an automated process that extracted a single call from background noise and measured all variables without intervention. Two species of Rhinolophus were easily identified from call duration and spectral measurements. For the remaining 12 species, discriminant function analysis and multilayer back-propagation perceptrons were used to classify calls to species level. Analyses were carried out with and without the inclusion of curve-fitting data to evaluate its usefulness in distinguishing among species. Discriminant function analysis achieved an overall correct classification rate of 79% with curve-fitting data included, while an artificial neural network achieved 87%. The removal of curve-fitting data improved the performance of the discriminant function analysis by 2 %, while the performance of a perceptron decreased by 2 %. However, an increase in correct identification rates when curve-fitting information was included was not found for all species. The use of a hierarchical classification system, whereby calls were first classified to genus level and then to species level, had little effect on correct classification rates by discriminant function analysis but did improve rates achieved by perceptrons. This is the first published study to use artificial neural networks to classify the echolocation calls of bats to species level. Our findings are discussed in terms of recent advances in recording and analysis technologies, and are related to factors causing convergence and divergence of echolocation call design in bats.
Resumo:
Smart Card Automated Fare Collection (AFC) data has been extensively exploited to understand passenger behavior, passenger segment, trip purpose and improve transit planning through spatial travel pattern analysis. The literature has been evolving from simple to more sophisticated methods such as from aggregated to individual travel pattern analysis, and from stop-to-stop to flexible stop aggregation. However, the issue of high computing complexity has limited these methods in practical applications. This paper proposes a new algorithm named Weighted Stop Density Based Scanning Algorithm with Noise (WS-DBSCAN) based on the classical Density Based Scanning Algorithm with Noise (DBSCAN) algorithm to detect and update the daily changes in travel pattern. WS-DBSCAN converts the classical quadratic computation complexity DBSCAN to a problem of sub-quadratic complexity. The numerical experiment using the real AFC data in South East Queensland, Australia shows that the algorithm costs only 0.45% in computation time compared to the classical DBSCAN, but provides the same clustering results.
Resumo:
Timely reporting, effective analyses and rapid distribution of surveillance data can assist in detecting the aberration of disease occurrence and further facilitate a timely response. In China, a new nationwide web-based automated system for outbreak detection and rapid response was developed in 2008. The China Infectious Disease Automated-alert and Response System (CIDARS) was developed by the Chinese Center for Disease Control and Prevention based on the surveillance data from the existing electronic National Notifiable Infectious Diseases Reporting Information System (NIDRIS) started in 2004. NIDRIS greatly improved the timeliness and completeness of data reporting with real time reporting information via the Internet. CIDARS further facilitates the data analysis, aberration detection, signal dissemination, signal response and information communication needed by public health departments across the country. In CIDARS, three aberration detection methods are used to detect the unusual occurrence of 28 notifiable infectious diseases at the county level and to transmit that information either in real-time or on a daily basis. The Internet, computers and mobile phones are used to accomplish rapid signal generation and dissemination, timely reporting and reviewing of the signal response results. CIDARS has been used nationwide since 2008; all Centers for Disease Control and Prevention (CDC) in China at the county, prefecture, provincial and national levels are involved in the system. It assists with early outbreak detection at the local level and prompts reporting of unusual disease occurrences or potential outbreaks to CDCs throughout the country.
Resumo:
Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.
Resumo:
The ability to estimate the expected Remaining Useful Life (RUL) is critical to reduce maintenance costs, operational downtime and safety hazards. In most industries, reliability analysis is based on the Reliability Centred Maintenance (RCM) and lifetime distribution models. In these models, the lifetime of an asset is estimated using failure time data; however, statistically sufficient failure time data are often difficult to attain in practice due to the fixed time-based replacement and the small population of identical assets. When condition indicator data are available in addition to failure time data, one of the alternate approaches to the traditional reliability models is the Condition-Based Maintenance (CBM). The covariate-based hazard modelling is one of CBM approaches. There are a number of covariate-based hazard models; however, little study has been conducted to evaluate the performance of these models in asset life prediction using various condition indicators and data availability. This paper reviews two covariate-based hazard models, Proportional Hazard Model (PHM) and Proportional Covariate Model (PCM). To assess these models’ performance, the expected RUL is compared to the actual RUL. Outcomes demonstrate that both models achieve convincingly good results in RUL prediction; however, PCM has smaller absolute prediction error. In addition, PHM shows over-smoothing tendency compared to PCM in sudden changes of condition data. Moreover, the case studies show PCM is not being biased in the case of small sample size.