994 resultados para Atomic ratio, Maximum
Resumo:
Concentrations of Fe, Mg, Ca, Sr, Mn, Zn, and other heavy metals were analyzed by atomic absorption spectrometry in 27 chert samples from the Pacific deep sea, 17 chert samples from land, and 4 associated sediments from the Pacific Ocean. Among the elements, Fe and Mg concentrations are highly correlatable as are the relationships between Ca and Sr, or between Ca and CO2. The correlation between Fe and Mg is particularly high for Pacific deep-sea flints and cherts, and for cherts of deep-sea origin from outcrops on land. Enrichments in heavy metals were recognized in some deep-sea cherts; volcanogenic cherts are enriched in Fe, a chert nodule containing basaltic fragments is enriched in Zn and Cr, and biogenically enclosed carbonates in flint nodules are enriched in Mn. The correlation of Fe and Mg and their constant ratio [Mg(%)/Fe(%)] of around 0.33 might be characteristic features in the pelagic clays contained in deep-sea flints and cherts, and the concentrations of heavy metals in them would be controlled by the concentrations of Fe-Mg correlated clays. Although the mineralogical nature of the Fe-Mg clay in deep-sea cherts was not clarified by dissolution experiments on opaline minerals in chert, the high concentrations of Fe-montmorillonite and fine-grained olivine or other ferromagnesian silicate minerals in the clay may result in the high correlations between Fe and Mg.
Resumo:
In the monograph metalliferous sediments of the East Pacific Rise near 21°S are under consideration. Distribution trends of chemical, mineral and grain size compositions of metalliferous sediments accumulated near the axis of this ultrafast spreading segment of the EPR are shown. On the basis of lithological and geochemical investigations spatial and temporal variations of hydrothermal activity are estimated. Migration rates of hydrothermal fields along the spreading axis are calculated. The model of cyclic hydrothermal process is suggested as a result of tectono-magmatic development of the spreding centre.
Resumo:
We present here the first mercury speciation study in the water column of the Southern Ocean, using a high-resolution south-to-north section (27 stations from 65.50°S to 44.00°S) with up to 15 depths (0-4440 m) between Antarctica and Tasmania (Australia) along the 140°E meridian. In addition, in order to explore the role of sea ice in Hg cycling, a study of mercury speciation in the 'snow-sea ice-seawater' continuum was conducted at a coastal site, near the Australian Casey station (66.40°S; 101.14°E). In the open ocean waters, total Hg (Hg(T)) concentrations varied from 0.63 to 2.76 pmol/L with 'transient-type' vertical profiles and a latitudinal distribution suggesting an atmospheric mercury source south of the Southern Polar Front (SPF) and a surface removal north of the Subantartic Front (SAF). Slightly higher mean Hg(T) concentrations (1.35 ± 0.39 pmol/L) were measured in Antarctic Bottom Water (AABW) compared to Antarctic Intermediate water (AAIW) (1.15 ± 0.22 pmol/L). Labile Hg (Hg(R)) concentrations varied from 0.01 to 2.28 pmol/L, with a distribution showing that the Hg(T) enrichment south of the SPF consisted mainly of Hg(R) (67 ± 23%), whereas, in contrast, the percentage was half that in surface waters north of PFZ (33 ± 23%). Methylated mercury species (MeHg(T)) concentrations ranged from 0.02 to 0.86 pmol/L. All vertical MeHg(T) profiles exhibited roughly the same pattern, with low concentrations observed in the surface layer and increasing concentrations with depth up to an intermediate depth maximum. As for Hg(T), low mean MeHg(T) concentrations were associated with AAIW, and higher ones with AABW. The maximum of MeHg(T) concentration at each station was systematically observed within the oxygen minimum zone, with a statistically significant MeHg(T) vs Apparent Oxygen Utilization (AOU) relationship (p <0.001). The proportion of Hg(T) as methylated species was lower than 5% in the surface waters, around 50% in deep waters below 1000 m, reaching a maximum of 78% south of the SPF. At Casey coastal station Hg(T) and Hg(R) concentrations found in the 'snow-sea ice-seawater' continuum were one order of magnitude higher than those measured in open ocean waters. The distribution of Hg(T) there suggests an atmospheric Hg deposition with snow and a fractionation process during sea ice formation, which excludes Hg from the ice with a parallel Hg enrichment of brine, probably concurring with the Hg enrichment of AABW observed in the open ocean waters. Contrastingly, MeHg(T) concentrations in the sea ice environment were in the same range as in the open ocean waters, remaining below 0.45 pmol/L. The MeHg(T) vertical profile through the continuum suggests different sources, including atmosphere, seawater and methylation in basal ice. Whereas Hg(T) concentrations in the water samples collected between the Antarctic continent and Tasmania are comparable to recent measurements made in the other parts of the World Ocean (e.g., Soerensen et al., 2010; doi:10.1021/es903839n), the Hg species distribution suggests distinct features in the Southern Ocean Hg cycle: (i) a net atmospheric Hg deposition on surface water near the ice edge, (ii) the Hg enrichment in brine during sea ice formation, and (iii) a net methylation of Hg south of the SPF.
Resumo:
We investigate the evolution of Cenozoic climate and ice volume as evidenced by the oxygen isotopic composition of seawater (delta18Osw) derived from benthic foraminiferal Mg/Ca ratios to constrain the temperature effect contained in foraminiferal delta18O values. We have constructed two benthic foraminiferal Mg/Ca records from intermediate water depth sites (Ocean Drilling Program sites 757 and 689 from the subtropical Indian Ocean and the Weddell Sea, respectively). Together with the previously published composite record of Lear et al. (2002, doi:10.1126/science.287.5451.269) and the Neogene record from the Southern Ocean of Billups and Schrag (2002, doi:10.1029/2000PA000567), we obtain three, almost complete representations of the delta18Osw for the past 52 Myr. We discuss the sensitivity of early Cenozoic Mg/Ca-derived paleotemperatures (and hence the delta18Osw) to assumptions about seawater Mg/Ca ratios. We find that during the middle Eocene (~ 49-40 Ma), modern seawater ratios yield Mg/Ca-derived temperatures that are in good agreement with the oxygen isotope paleothermometer assuming ice-free conditions. Intermediate waters cooled during the middle Eocene reaching minimum temperatures by 40 Ma. The corresponding delta18Osw reconstructions support ice growth on Antarctica beginning by at least 40 Ma. At the Eocene/Oligocene boundary, Mg/Ca ratios (and hence temperatures) from Weddell Sea site 689 display a well-defined maximum. We caution against a paleoclimatic significance of this result and put forth that the partitioning coefficient of Mg in benthic foraminifera may be sensitive to factors other than temperature. Throughout the remainder of the Cenozoic, the temporal variability among delta18Osw records is similar and similar to longer-term trends in the benthic foraminiferal delta18O record. An exception occurs during the Pliocene when delta18Osw minima in two of the three records suggest reductions in global ice volume that are not apparent in foraminiferal delta18O records, which provides a new perspective to the ongoing debate about the stability of the Antarctic ice sheet. Maximum delta18Osw values recorded during the Pleistocene at Southern Ocean site 747 agree well with values derived from the geochemistry of pore waters (Schrag et al., 1996, doi:10.1126/science.272.5270.1930) further highlighting the value of the new Mg/Ca calibrations of Martin et al. (2002, doi:10.1016/S0012-821X(02)00472-7) and Lear et al. (2002, doi:10.1016/S0016-7037(02)00941-9) applied in this study. We conclude that the application of foraminiferal Mg/Ca ratios allows a refined view of Cenozoic ice volume history despite uncertainties related to the geochemical cycling of Mg and Ca on long time scales.
Resumo:
Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The Exploitation Ecosystem Hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.
Resumo:
The bimodal, alkaline volcanic suite of the Kap Washington Group (KWG) at the northern coast of Greenland was investigated during the BGR CASE 2 expedition in 1994. Geochemical and Nd and Sr isotopic data are presented for basalts to rhyolites of the KWG and of related basaltic dykes cutting Lower Paleozoic sediments. In the evd(t) vs. (87Sr/86Sr)t diagram, the KWG basalts and rhyolites follow a common mixing trend with increasing crustal contamination from basic to acid volcanites. Assimilation of pre-existing crustal rocks during formation of the rhyolitic melt is documented by Nd model ages of 0.9-1.2 Ga and by different fractionation trends for the basalts and the rhyolites in the Y vs. Zr diagram. Petrographical and geochemical features indicate intra-plate volcanism which was active most probably during a continental rifting phase. A new Rb/Sr whole rock age on rhyolites of 64 ±3 Ma, corresponding to the result of LARSEN (1982), confirms that the volcanic activity lasted until the Cretaceous-Tertiary boundary. 40Ar139Ar dating on amphibol separates from a comendite yielded strongly disturbed age spectra with a minimum age of 37.7 ±0.3 Ma. This age is interpreted to date a hydrothermal overprint of the volcanic rocks related to compressive tectonics which led to the overthrust of basement rocks over the Kap Washington Group.