983 resultados para Ativação


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cerium oxide has a high potential for use in removing pollutants after combustion, removal of organic matter in waste water and the fuel-cell technology. The nickel oxide is an attractive material due to its excellent chemical stability and their optical properties, electrical and magnetic. In this work, CeO2-NiO- systems on molars reasons 1:1(I), 1:2(II) e 1:3(III) metal-citric acid were synthesized using the Pechini method. We used techniques of TG / DTG and ATD to monitor the degradation process of organic matter to the formation of the oxide. By thermogravimetric analysis and applying the dynamic method proposed by Coats-Redfern, it was possible to study the reactions of thermal decomposition in order to propose the possible mechanism by which the reaction takes place, as well as the determination of kinetic parameters as activation energy, Ea, pre-exponential factor and parameters of activation. It was observed that both variables exert a significant influence on the formation of complex polymeric precursor. The model that best fitted the experimental data in the dynamic mode was R3, which consists of nuclear growth, which formed the nuclei grow to a continuous reaction interface, it proposes a spherical symmetry (order 2 / 3). The values of enthalpy of activation of the system showed that the reaction in the state of transition is exothermic. The variables of composition, together with the variable temperature of calcination were studied by different techniques such as XRD, IV and SEM. Also a study was conducted microstructure by the Rietveld method, the calculation routine was developed to run the package program FullProf Suite, and analyzed by pseudo-Voigt function. It was found that the molar ratio of variable metal-citric acid in the system CeO2-NiO (I), (II), (III) has strong influence on the microstructural properties, size of crystallites and microstrain network, and can be used to control these properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cells are electrochemical devices that convert chemical energy in electrical energy by a reaction directly. The solid oxide fuel cell (SOFC) works in temperature between 900ºC up to 1000ºC, Nowadays the most material for ceramic electrolytes is yttria stabilized zirconium. However, the high operation temperature can produce problems as instability and incompatibility of materials, thermal degradation and high cost of the surround materials. These problems can be reduced with the development of intermediate temperature solid oxide fuel cell (IT-SOFC) that works at temperature range of 600ºC to 800ºC. Ceria doped gadolinium is one of the most promising materials for electrolytes IT-SOFC due high ionic conductivity and good compatibility with electrodes. The inhibition of grain growth has been investigated during the sintering to improve properties of electrolytes. Two-step sintering (TSS) is an interesting technical to inhibit this grain growth and consist at submit the sample at two stages of temperature. The first one stage aims to achieve the critical density in the initiating the sintering process, then the sample is submitted at the second stage where the temperature sufficient to continue the sintering without accelerate grain growth until to reach total densification. The goal of this work is to produce electrolytes of ceria doped gadolinium by two-step sintering. In this context were produced samples from micrometric and nanometric powders by two routes of two-step sintering. The samples were obtained with elevate relative density, higher than 90% using low energy that some works at the same area. The average grain size are at the range 0,37 μm up to 0,51 μm. The overall ionic conductivity is 1,8x10-2 S.cm and the activation energy is 0,76 eV. Results shown that is possible to obtain ceria-doped gadolinium samples by two-step sintering technique using modified routes with characteristics and properties necessary to apply as electrolytes of solid oxide fuel cell

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-Ceramic (M/C) Zirconia-stainless steel interfaces have been processed through brazing techniques due to the excellent combination of properties such as high temperature stability, high corrosion resistance and good mechanical properties. However, some M/C interfaces show some defects, like porosity and cracks results in the degradation of the interfaces, leading even to its total rupture. Most of time, those defects are associated with an improper brazing parameters selection to the M/C system. In this work, ZrO2 Y-TZP and ZrO2 Mg - PSZ were joint with the stainless steel grade 304 by brazing using a eutectic silver-copper (Ag28Cu) interlayer alloy with different thermal cycles. Ceramic surfaces were previous mechanically metallized with titanium to improve adhesion of the system. The effect of temperature on the M/C interface was studied. SEM-EDS and 3 point flexural bend test were performed to evaluate morphology, chemical composition and mechanical resistance of the M/C interfaces. Lower thermal cycle temperatures produced better results of mechanical resistance, and more regular/ homogeneous reaction layers between braze alloy and metal-ceramic surfaces. Also was proved the AgCu braze alloy activation in situ by titanium

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of the fluid flux in oil fields is influenced by different factors and it has a big impact on the recovery of hydrocarbons. There is a need of evaluating and adapting the actual technology to the worldwide reservoirs reality, not only on the exploration (reservoir discovers) but also on the development of those that were already discovered, however not yet produced. The in situ combustion (ISC) is a suitable technique for these recovery of hydrocarbons, although it remains complex to be implemented. The main objective of this research was to study the application of the ISC as an advanced oil recovery technique through a parametric analysis of the process using vertical wells within a semi synthetic reservoir that had the characteristics from the brazilian northwest, in order to determine which of those parameters could influence the process, verifying the technical and economical viability of the method on the oil industry. For that analysis, a commercial reservoir simulation program for thermal processes was used, called steam thermal and advanced processes reservoir simulator (STARS) from the computer modeling group (CMG). This study aims, through the numerical analysis, find results that help improve mainly the interpretation and comprehension of the main problems related to the ISC method, which are not yet dominated. From the results obtained, it was proved that the mediation promoted by the thermal process ISC over the oil recovery is very important, with rates and cumulated production positively influenced by the method application. It was seen that the application of the method improves the oil mobility as a function of the heating when the combustion front forms inside the reservoir. Among all the analyzed parameters, the activation energy presented the bigger influence, it means, the lower the activation energy the bigger the fraction of recovered oil, as a function of the chemical reactions speed rise. It was also verified that the higher the enthalpy of the reaction, the bigger the fraction of recovered oil, due to a bigger amount of released energy inside the system, helping the ISC. The reservoir parameters: porosity and permeability showed to have lower influence on the ISC. Among the operational parameters that were analyzed, the injection rate was the one that showed a stronger influence on the ISC method, because, the higher the value of the injection rate, the higher was the result obtained, mainly due to maintaining the combustion front. In connection with the oxygen concentration, an increase of the percentage of this parameter translates into a higher fraction of recovered oil, because the quantity of fuel, helping the advance and the maintenance of the combustion front for a longer period of time. About the economic analysis, the ISC method showed to be economically feasible when evaluated through the net present value (NPV), considering the injection rates: the higher the injection rate, the higher the financial incomes of the final project

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fast pyrolysis of lignocellulosic biomass is a thermochemical conversion process for production energy which have been very atratactive due to energetic use of its products: gas (CO, CO2, H2, CH4, etc.), liquid (bio-oil) and charcoal. The bio-oil is the main product of fast pyrolysis, and its final composition and characteristics is intrinsically related to quality of biomass (ash disposal, moisture, content of cellulose, hemicellulose and lignin) and efficiency removal of oxygen compounds that cause undesirable features such as increased viscosity, instability, corrosiveness and low calorific value. The oxygenates are originated in the conventional process of biomass pyrolysis, where the use of solid catalysts allows minimization of these products by improving the bio-oil quality. The present study aims to evaluate the products of catalytic pyrolysis of elephant grass (Pennisetum purpureum Schum) using solid catalysts as tungsten oxides, supported or not in mesoporous materials like MCM-41, derived silica from rice husk ash, aimed to reduce oxygenates produced in pyrolysis. The biomasss treatment by washing with heated water (CEL) or washing with acid solution (CELix) and application of tungsten catalysts on vapors from the pyrolysis process was designed to improve the pyrolysis products quality. Conventional and catalytic pyrolysis of biomass was performed in a micro-pyrolyzer, Py-5200, coupled to GC/MS. The synthesized catalysts were characterized by X ray diffraction, infrared spectroscopy, X ray fluorescence, temperature programmed reduction and thermogravimetric analysis. Kinetic studies applying the Flynn and Wall model were performed in order to evaluate the apparent activation energy of holoceluloce thermal decomposition on samples elephant grass (CE, CEL and CELix). The results show the effectiveness of the treatment process, reducing the ash content, and were also observed decrease in the apparent activation energy of these samples. The catalytic pyrolysis process converted most of the oxygenate componds in aromatics such as benzene, toluene, ethylbenzene, etc

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toxoplasmosis is one zoonosis caused by Toxoplasma gondii protozoan. Goats, amongst the production animals, are one of the species most susceptible to this parasite, being one them main involved agents in ovine and goat abortions, determining great economic losses and implications for public health, since the presence it parasite in the products of goat origin, consist in one of the main sources of infection for the man. In this study 244 blood samples in 8 farms situated in 4 cities from the Sertão do Cabugi region, Rio Grande do Norte State, northeast of Brazil and, tested by ELISA assay. The results had shown a prevalence of 47.13% for anti- T. gondii antibodies and a significant association between positivity and variable evaluated as age, locality and property. The IgG avidity assay evaluated in 115 positive samples was carried to discriminate acute and chronic infection. Twelve samples (10.4%) had presented antibodies of low avidity while 103 (89.6%) presented high avidity antibodies; indicating that most of the animals was precocious exposure to the parasite. Significant difference was verified only for the variable sex. We also evaluate the capacity of recombinant adenoviruses codifying SAG1, SAG2, SAG3 and CMV in inducing activation of specific immune response in goat. These 109 animals received 109 pfu of the AdSAG1, AdSAG2, AdSAG3, AdCMV or PBS in vaccine protocol with 3 immunizations. Serum samples of the each animal, before and after mmunization, had been submitted to the ELISA. The results demonstrate that the immunizations had induced the production of IgG antibodies specific against T. gondii proteins

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are continuously generated and can be derived from cellular metabolism or induced by exogenous factors, in addition, have the capacity to damage molecules like DNA and proteins. BER is considered the main route of DNA damage oxidative repair, however, several studies have demonstrated the importance of the proteins participation of other ways to correct these injuries. NER enzymes deficiency, such as CSB and XPC, acting in the damage recognition step in the two subways this system influences the effectiveness of oxidative damage repair. However, the mechanisms by which cells deficient in these enzymes respond to oxidative stress and its consequences still need to be better understood. Thus, the aim of this study was to perform a proteomic analysis of cell lines proficient and deficient in NER, exposed to oxidative stress, in order to identify proteins involved, directly or not, in response to oxidative stress and DNA repair. For this, three strains of human fibroblasts, MRC5-SV, CS1AN (CSBdeficient) and XP4PA (XPC-deficient) were treated with photosensitized riboflavin and then carried out the differentially expressed proteins identification by mass spectrometry. From the results, it was observed in MRC5-SV increase expression in most of the proteins involved in cellular defense, an expected response to a normal cell line subjected to stress. CS1AN showed a response disjointed, it is not possible to establish many interactions between the proteins identified, may be one explanation for their sensitivity to treatment with riboflavin and other oxidants and increased cell death probably by induction of pro-apoptotic pathways. Already XP4PA showed higher expression of apoptosis-blocking proteins, as there was inhibition or reduced expression of others involved with the activation of this process, suggesting the activation of an anti-apoptotic mechanism in this lineage, which may help explain the high susceptibility to develop cancers in XPC individuals. These results also contribute to elucidate action mechanisms of NER in oxidative damage and the understanding of important routes in the oxidative stress correlation, repair and malignant tumors formation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seaweeds are organisms known to exhibit a variety of biomolecules with pharmacological properties. The coast of Rio Grande do Norte has over 100 species of seaweeds, most of them not yet explored for their pharmacological potential. Sugars and phenolic compounds are the most studied of these being assigned a range of biological properties, such as anticoagulant , antiinflammatory, antitumor and antioxidant activities. In this work, we obtained methanolic extracts from thirteen seaweeds of the coast of Rio Grande do Norte (Dictyota cervicornis; Dictiopterys delicatula; Dictyota menstruallis; D. mertensis; Sargassum filipendula; Spatoglossum schröederi; Acanthophora specifera; Botryocladia occidentalis; Caulerpa cupresoides; C. racemosa; C. prolifera; C. sertularioides e Codium isthmocladum). They were evaluated as anticoagulant and antioxidant drugs, as well as antiproliferative drugs against the tumor cell line HeLa. None of the methanolic extracts showed anticoagulant activity, but when they were evaluated as antioxidant drugs all of extracts showed antioxidant activity in all tests performed (total antioxidant capacity, sequestration of superoxide and hydroxyl radicals, ferric chelation and reductase activity), especially the algae D. mentrualis, D. cilliolata and C. prolifera, who had the greatest potential to donate electrons.In addition, the ability of iron ions chelation appears as the main antioxidant mechanism of the methanolic extracts of these seaweeds mainly for the extract of the C. racemosa seaweed, which reached almost 100% activity. In the MTT assay, all extracts showed inhibitory activity at different levels againts HeLa cells. Moreover, D. cilliolata (MEDC) and D. menstrualis (MEDM) extracts showed specific activity to this cell line, not inhibiting the viability of 3T3 normal cell line, so they were chosen for detailing the antiproliferative mechanism of action. Using flow cytometry, fluorescence microscopy and in vitro assays we demonstrated that MEDC and MEDM induced apoptosis in HeLa cells by activation of caspases 3 and 9 and yet, MEDC induces cell cycle arrest in S phase. Together, these results showed that the methanolic extracts of brown seaweed D. menstrualis and D. cilliolata may contain agents with potential use in combatting cells from human uterine adenocarcinoma. This study also points to the need for more in-depth research on phytochemical and biological context to enable the purification of biologically active products of these extracts

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genital HPV infection is very common between men and women worldwide, affecting particularly young women, constituting a serious public health problem in less developed regions, favored by the poor living conditions of population. The cytology and colposcopy have notorious importance in the diagnosis of precursor lesions of cervical cancer and therefore its prevention. However, even with such diagnostic tools, the number of women who develop cervical cancer is still high. This study aims to assess the prevalence of genital tract infection by HPV in pregnant and nonpregnant women, evaluating the profile of the immune response presented by the women of these two groups in order to establish correlations among profile of immune response, presence of virus and occurrence of lesions of the uterine cervix. We analyzed specimens obtained from the cervix of 221 patients, 91 pregnant and 130 non-pregnant, aged 14-72 years. The women were subjected to colposcopic and cytologic evaluation detect possible changes in the cervix and then samples were collected in order to perform HPV detection by PCR and real-time PCR for detection of mRNA of pro-inflammatory and anti-inflammatory cytokines. In the present study, the overall prevalence of HPV genital infection was 28.1%; of which 31.9% were pregnant patients and 25.4% in non-pregnant women. Young women under 30 years and those with low educational level education showed a higher risk of HPV infection. Colposcopy showed better correlation with detection of HPV DNA by PCR, when compared to cytology. Generally, HPV infected patients, pregnant or not, exhibited reduced mRNA expression of both pro-inflammatory (IFN-γ, TNF-α) and anti-inflammatory (IL -10) cytokines, when compared to patients not infected by HPV. Nonpregnant patients infected presented increase mRNA expression of IL-17 in patients without injury, whereas those with lesion showed higher mRNA expression of TGF-β. Pregnant women without injury infected exhibited increased mRNA expression of TGF-β. There was no difference in HPV prevalence between pregnant and nonpregnant women. There was a reduction of pro-inflammatory cytokines, except IL-17, in all women infected by HPV. Moreover, we observed an increase of TGF-β in HPV-infected women who are pregnant or not. The results suggest that, in women in this study, HPV infection promoted changes in the profile of cytokines necessary for activation of effective immune response, possibly favoring viral persistence

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A galactose and sucrose specific lectin from the marine sponge Cliona varians named CvL was purified by acetone fractionation followed by Sepharose CL 4B affinity chromatography. Models of leukocyte migration in vivo were used to study the inflammatory activity of CvL through of mouse paw oedema and peritonitis. Effect of CvL on peritoneal macrophage activation was analyzed. Effects of corticoids and NSAIDS drugs were also evaluated on peritonitis stimulated by CvL. Results showed that mouse hind-paw oedema induced by sub plantar injections of CvL was dependent dose until 50µg/paw. This CvL dose when administered into mouse peritoneal cavities induced maxima cell migration (9283 cells/µL) at 24 hours after injection. This effect was preferentially inhibited by incubation of CvL with the carbohydrates D-galactose followed by sucrose. Pre-treatment of mice with 3% thioglycolate increases the peritoneal macrophage population 2.3 times, and enhanced the neutrophil migration after 24h CvL injection (75.8%, p<0.001) and no significant effect was observed in presence of fMLP. Finally, Pre-treatment of mice with dexamethason (cytokine antagonist) decreased 65.6%, (p<0.001), with diclofenac (non-selective NSAID) decreased 34.5%, (p<0.001) and Celecoxib (selective NSAID) had no effect on leukocyte migration after submission at peritonitis stimulated by CvL, respectively. Summarizing, data suggest that CvL shows pro-inflammatory activity, inducing neutrophil migration probably by pathway on resident macrophage activation and on chemotaxis mediated by cytokines

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the effect of indole-3-acetic acid (IAA) in the activation of goats preantral follicles (FOPA). Were used four pairs of ovaries of adult mixed breed goats. Each ovarian pair was divided into 23 fragments. One fragment was fixed for histology and other fragment was using to follicular isolation procedure. The remaining fragments were cultured in 1.0 ml of Minimum Essential Medium (MEM) or MEM supplemented with IAA at concentrations of 10, 40, 100, 500 or 1000 ng/mL. The in vitro culture was performed at 39°C in incubator with 5% CO2 for 1, 3 and 5 days. After in vitro culture was evaluated histological integrity and viability of FOPA. The addition of 100 ng/ml of IAA to MEM showed a significant increase in follicles transition in the third day of in vitro culture, characterizing follicular activation. Moreover, this concentration was obtained maintaining the histological integrity of PAF by the fifth day of in vitro culture. The viability test confirmed the results of histology. Thus, we conclude that IAA can promote the activation of goats FOPA