977 resultados para Asymptotic Formulas
Resumo:
Title vignette, engraved.
Resumo:
Title in Hebrew and Greek at head of t.p. romanized.
Resumo:
Mode of access: Internet.
Resumo:
Cover title: Pastor's manual.
Resumo:
"April 24, 1911."
Resumo:
Mode of access: Internet.
Resumo:
We develop results for bifurcation from the principal eigenvalue for certain operators based on the p-Laplacian and containing a superlinear nonlinearity with a critical Sobolev exponent. The main result concerns an asymptotic estimate of the rate at which the solution branch departs from the eigenspace. The method can also be applied for nonpotential operators.
Resumo:
Simple design formulas for designing ultra wideband (UWB) antennas in the form of complementary planar monopoles are described and their validity is tested using full electromagnetic wave simulations and measurements. Assuming dielectric substrate with relative permittivity of 10.2, the designed antennas feature a small size of 13 mmtimes26 mm. They exhibit a 10 dB return loss bandwidth from 3 to more than 15 GHz accompanied by near omnidirectional characteristics and good radiation efficiency throughout this band
Resumo:
In this thesis work we develop a new generative model of social networks belonging to the family of Time Varying Networks. The importance of correctly modelling the mechanisms shaping the growth of a network and the dynamics of the edges activation and inactivation are of central importance in network science. Indeed, by means of generative models that mimic the real-world dynamics of contacts in social networks it is possible to forecast the outcome of an epidemic process, optimize the immunization campaign or optimally spread an information among individuals. This task can now be tackled taking advantage of the recent availability of large-scale, high-quality and time-resolved datasets. This wealth of digital data has allowed to deepen our understanding of the structure and properties of many real-world networks. Moreover, the empirical evidence of a temporal dimension in networks prompted the switch of paradigm from a static representation of graphs to a time varying one. In this work we exploit the Activity-Driven paradigm (a modeling tool belonging to the family of Time-Varying-Networks) to develop a general dynamical model that encodes fundamental mechanism shaping the social networks' topology and its temporal structure: social capital allocation and burstiness. The former accounts for the fact that individuals does not randomly invest their time and social interactions but they rather allocate it toward already known nodes of the network. The latter accounts for the heavy-tailed distributions of the inter-event time in social networks. We then empirically measure the properties of these two mechanisms from seven real-world datasets and develop a data-driven model, analytically solving it. We then check the results against numerical simulations and test our predictions with real-world datasets, finding a good agreement between the two. Moreover, we find and characterize a non-trivial interplay between burstiness and social capital allocation in the parameters phase space. Finally, we present a novel approach to the development of a complete generative model of Time-Varying-Networks. This model is inspired by the Kaufman's adjacent possible theory and is based on a generalized version of the Polya's urn. Remarkably, most of the complex and heterogeneous feature of real-world social networks are naturally reproduced by this dynamical model, together with many high-order topological properties (clustering coefficient, community structure etc.).
Resumo:
Computing circuits composed of noisy logical gates and their ability to represent arbitrary Boolean functions with a given level of error are investigated within a statistical mechanics setting. Existing bounds on their performance are straightforwardly retrieved, generalized, and identified as the corresponding typical-case phase transitions. Results on error rates, function depth, and sensitivity, and their dependence on the gate-type and noise model used are also obtained.
Resumo:
A horizontal fluid layer heated from below in the presence of a vertical magnetic field is considered. A simple asymptotic analysis is presented which demonstrates that a convection mode attached to the side walls of the layer sets in at Rayleigh numbers much below those required for the onset of convection in the bulk of the layer. The analysis complements an earlier analysis by Houchens [J. Fluid Mech. 469, 189 (2002)] which derived expressions for the critical Rayleigh number for the onset of convection in a vertical cylinder with an axial magnetic field in the cases of two aspect ratios. © 2008 American Institute of Physics.
Resumo:
We study noisy computation in randomly generated k-ary Boolean formulas. We establish bounds on the noise level above which the results of computation by random formulas are not reliable. This bound is saturated by formulas constructed from a single majority-like gate. We show that these gates can be used to compute any Boolean function reliably below the noise bound.
Resumo:
This work was presented in part at the 8th International Conference on Finite Fields and Applications Fq^8 , Melbourne, Australia, 9-13 July, 2007.