957 resultados para Assyrian Church of the East
Resumo:
The article looks at three antifascist films from the 1980s by the East German film company DEFA: Jürgen Brauer's Pugowitza (1981), Egon Schlegel's Die Schüsse der Arche Noah (1983), and Helmut Dziuba's Jan auf der Zille (1986), which during this final decade of the East German state re-examine an ideologically seminal constellation of the GDR's official antifascism – the relationship between antifascist father and son. Linking generational and political succession, the father-son relationship helped to legitimise the GDR as a state in which the young continued the antifascist fight of the old communists against the Nazi dictatorship. From the 1950s on, DEFA films contributed to the visualisation of this relationship, codifying it not only as heroic but also as ‘natural’: the assumed innocence of the communist son was meant to naturalise the father's antifascist/communist cause. The 1980s saw this naturalised political succession questioned. By re-telling the canonised father-son story, the three films visualise the generational antifascist contract as flawed. Re-deploying the son's assumed innocence in a critique of the father, they explore new endings to the antifascist story and revive the discussion of categories like ‘victim’ and ‘perpetrator’.// Der Aufsatz untersucht drei antifaschistische Filme der ostdeutschen Filmgesellschaft DEFA aus den 1980er Jahren: Jürgen Brauers Pugowitza (1981), Egon Schlegels Die Schüsse der Arche Noah (1983) und Helmut Dziubas Jan auf der Zille (1986). Alle drei Filme wurden im letzten Jahrzehnt der DDR gedreht und greifen eine ideologisch tragende Konstellation des offiziellen DDR-Antifaschismus auf – die Beziehung zwischen antifaschistischem Vater und Sohn. In der Vater-Sohn-Beziehung verband sich Generationenabfolge mit politischer Nachkommenschaft, eine Verbindung, die half, die DDR als einen Staat zu legitimieren, in dem die Jungen den antifaschistischen Kampf der alten Kommunisten gegen die Nazi-Diktatur weiterführten. Seit den 1950er Jahren beteiligte sich die DEFA an der Visuali-sierung dieser Beziehung und kodifizierte sie nicht nur als heldenhaft, sondern auch als ‘natürlich’: die behauptete Unschuld der kommunistschen Söhne diente dazu, den antifaschistisch-kommunistischen Kampf der Väter zu naturalisieren. Die solcher Art politisch interpretierte Generationenabfolge verlor ihre Natürlichkeit, als sie in den 1980er Jahren kritisch befragt wurde. Im nochmaligen Erzählen der kanonisierten Vater-Sohn-Geschichte wird die Brüchigkeit des antifaschistischen Gesellschaftsvertrags in allen drei Filmen sichtbar. Die vermeintliche Unschuld der Söhne wird nun zu einer Kritik der Väter genutzt, wobei die Filme ein neues Ende für die antifaschistische Geschichte erkunden und die Debatte über Kategorien wie ‘Opfer’ und ‘Täter’ wieder aufnehmen.
Resumo:
The South Asian monsoon is one of the most significant manifestations of the seasonal cycle. It directly impacts nearly one third of the world’s population and also has substantial global influence. Using 27-year integrations of a high-resolution atmospheric general circulation model (Met Office Unified Model), we study changes in South Asian monsoon precipitation and circulation when horizontal resolution is increased from approximately 200 to 40 km at the equator (N96 to N512, 1.9 to 0.35◦). The high resolution, integration length and ensemble size of the dataset make this the most extensive dataset used to evaluate the resolution sensitivity of the South Asian monsoon to date. We find a consistent pattern of JJAS precipitation and circulation changes as resolution increases, which include a slight increase in precipitation over peninsular India, changes in Indian and Indochinese orographic rain bands, increasing wind speeds in the Somali Jet, increasing precipitation over the Maritime Continent islands and decreasing precipitation over the northern Maritime Continent seas. To diagnose which resolution related processes cause these changes we compare them to published sensitivity experiments that change regional orography and coastlines. Our analysis indicates that improved resolution of the East African Highlands results in the improved representation of the Somali Jet and further suggests that improved resolution of orography over Indochina and the Maritime Continent results in more precipitation over the Maritime Continent islands at the expense of reduced precipitation further north. We also evaluate the resolution sensitivity of monsoon depressions and lows, which contribute more precipitation over northeast India at higher resolution. We conclude that while increasing resolution at these scales does not solve the many monsoon biases that exist in GCMs, it has a number of small, beneficial impacts.
Resumo:
The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We present a Rare Earth Elements (REE) record determined on the EPICA ice core drilled at Dronning Maud Land (EDML) in the Atlantic sector of the East Antarctic Plateau. The record covers the transition from the last glacial stage (LGS) to the early Holocene (26 600–7500 yr BP) at decadal to centennial resolution. Additionally, samples from potential source areas (PSAs) for Antarctic dust were analyzed for their REE characteristics. The dust provenance is discussed by comparing the REE fingerprints in the ice core and the PSA samples. We find a shift in variability in REE composition at ~15 000 yr BP in the ice core samples. Before 15 000 yr BP, the dust composition is very uniform and its provenance was most certainly dominated by a South American source. After 15 000 yr BP, multiple sources such as Australia and New Zealand become relatively more important, although South America remains the major dust source. A similar change in the dust characteristics was observed in the EPICA Dome C ice core at around ~15 000 yr BP, accompanied by a shift in the REE composition, thus suggesting a change of atmospheric circulation in the Southern Hemisphere.
Resumo:
One of two active volcanoes in the western branch of the East African Rift, Nyamuragira (1.408ºS, 29.20ºE; 3058 m) is located in the D.R. Congo. Nyamuragira emits large amounts of SO2 (up to ~1 Mt/day) and erupts low-silica, alkalic lavas, which achieve flow rates of up to ~20 km/hr. The source of the large SO2 emissions and pre-eruptive magma conditions were unknown prior to this study, and 1994-2010 lava volumes were only recently mapped via satellite imagery, mainly due to the region’s political instability. In this study, new olivine-hosted melt inclusion volatile (H2O, CO2, S, Cl, F) and major element data from five historic Nyamuragira eruptions (1912, 1938, 1948, 1986, 2006) are presented. Melt compositions derived from the 1986 and 2006 tephra samples best represent pre-eruptive volatile compositions because these samples contain naturally glassy inclusions that underwent less post-entrapment modification than crystallized inclusions. The total amount of SO2 released from the 1986 (0.04 Mt) and 2006 (0.06 Mt) eruptions are derived using the petrologic method, whereby S contents in melt inclusions are scaled to erupted lava volumes. These amounts are significantly less than satellite-based SO2 emissions for the same eruptions (1986 = ~1 Mt; 2006 = ~2 Mt). Potential explanations for this observation are: 1) accumulation of a vapor phase within the magmatic system that is only released during eruptions, and/or 2) syn-eruptive gas release from unerupted magma. Post-1994 Nyamuragira lava volumes were not available at the beginning of this study. These flows (along with others since 1967) are mapped with Landsat MSS, TM, and ETM+, Hyperion, and ALI satellite data and combined with published flow thicknesses to derive volumes. Satellite remote sensing data was also used to evaluate Nyamuragira SO2 emissions. These results show that the most recent Nyamuragira eruptions injected SO2 into the atmosphere between 15 km (2006 eruption) and 5 km (2010 eruption). This suggests that past effusive basaltic eruptions (e.g., Laki 1783) are capable of similar plume heights that reached the upper troposphere or tropopause, allowing SO2 and resultant aerosols to remain longer in the atmosphere, travel farther around the globe, and affect global climates.
Resumo:
Benthic foraminifer and delta13C data from Site 849, on the west flank of the East Pacific Rise (0°11 'N, 110°31'W; 3851 m), give relatively continuous records of deep Pacific Ocean stable isotope variations between 0 and 5 Ma. The mean sample spacing is 4 k.y. Most analyses are from Cibicides wuellerstorfi, but isotopic offsets relative to Uvigerina peregrina appear roughly constant. Because of its location west of the East Pacific Rise, Site 849 yields a suitable record of mean Pacific Ocean delta13C, which approximates a global oceanic signal. The ~100-k.y.-period climate cycle, which is prevalent in delta18O does not dominate the long-term delta13C record. For delta13C, variations in the ~400- and 41-k.y. periods are more important. Phase lags of delta13C relative to ice volume in the 41- and 23-k.y. bands are consistent with delta13C as a measure of organic biomass. A model-calculated exponential response time of 1-2 k.y. is appropriate for carbon stored in soils and shallow sediments responding to glacial-interglacial climate change. Oceanic delta13C leads ice volume slightly in the 100-k.y. band, and this suggests another process such as changes in continental weathering to modulate mean river delta13C at long periods. The delta13C record from Site 849 diverges from that of Site 677 in the Panama Basin mostly because of decay of 13C-depleted organic carbon in the relatively isolated Panama Basin. North Atlantic to Pacific delta13C differences calculated using published data from Sites 607 and 849 reveal variations in Pliocene deep water within the range of those of the late Quaternary. Maximum delta13C contrast between these sites, which presumably reflects maximum influx of high-delta13C northern source water into the deep North Atlantic Ocean, occurred between 1.3 and 2.1 Ma, well after the initiation of Northern Hemisphere glaciation. Export of high-delta13C North Atlantic Deep Water from the Atlantic to the circumpolar Antarctic, as recorded by published delta13C data from Subantarctic Site 704, appears unrelated to the North Atlantic-Pacific delta13C contrast. To account for this observation, we suggest that deep-water formation in the North Atlantic reflects northern source characteristics, whereas export of this water into the circumpolar Antarctic reflects Southern Hemisphere wind forcing. Neither process appears directly linked to ice-volume variations.
Resumo:
During "Meteor" Cruise 6/1966 in the northwest Atlantic a systematic survey of the bottom topography of the southeast Greenland continental margin was undertaken. Eighty-seven profiles transverse to the shelf edge at distances of 3-4 nautical miles and two longitudinal profiles parallel to the coast were carried out with the ELAC Narrow Beam Echo-Sounder giving a reliable record of even steep slopes. On the basis of the echo soundings the topography and morphology of the continental shelf and slope are evaluated. A detailed bathymetric chart and a serial profile chart were designed as working material for the morphological research. These maps along with the original echograms are morphometrically evaluated. The analysis of the sea bottom features is the basis of a subsequent morphogenetical interpretation, verified and extended by means of interpretation of magnetic data and sediment analysis (grain size, roundness, lithology). The results of the research are expressed in a geomorphological map. The primary findings can be summarized as follows: 1) The southeast Greenland shelf by its bottom topography can be clearly designated as a glacially formed area. The glacial features of the shelf can be classified into two zones nearly parallel to the coast: glacial erosion forms on the inner shelf and glacial accumulation forms on the outer shelf. The inner shelf is characterized by the rugged and hummocky topography of ice scoured plains with clear west/east slope asymmetry. On the outer shelf three types of glacial accumulation forms can be recognized: ice margin deposits with clearly expressed terminal moraines, glacial till plains and glaciomarine outwash fans. Both zones of the shelf can be subdivided into two levels of relief. The ice scoured plains, with average depths of 240 meters (m), are dissected to a maximum depth of 1060 m (Gyldenloves Trough) by trough valleys, which are the prolongations of the Greenland fjords. The banks of the outer shelf, with an average depth of 180 m, surround glacial basins with a maximum depth of 670 meters. 2) The sediments of the continental shelf can be classified as glacial due to their grain size distribution and the degree of roundness of the gravel particles. The ice margin deposits on the outer shelf can be recognized by their high percentage of gravels. On the inner shelf a rock surface is suggested, intermittently covered by glacial deposits. In the shelf troughs fine-grained sediments occur mixed with gravels. 3) Topography and sediments show that the southeast Greenland shelf was covered by an ice sheet resting on the sea floor during the Pleistocene ice-age. The large end moraines along the shelf edge probably indicate the maximum extent of the Wurm shelf ice resting on the sea floor. The breakthroughs of the end moraines in front of the glacial basins suggest that the shelf ice has floated further seaward over the increasing depths. 4) Petrographically the shelf sediments consist of gneisses, granites and basalts. While gneisses and granites occire on the nearby coast, basalt is not known to exist here. Either this material has been drifted by icebergs from the basalt province to the north or exists on the southeast Greenland shelf itself. The last interpretation is supported bythe high portion of basalt contained in the sediment samples taken and the strong magnetic anomalies probably caused by basaltic intrusions. 5) A magnetic profile allows the recognition of two magnetically differing areas which approximately coincide with the glacial erosion and accumulation zones. The inner shelf shows a strong and variable magnetic field because the glacially eroded basement forms the sea floor. The outer shelf is characterized by a weak and homogenous magnetic field, as the magnetized basement lies at greater depthy, buried by a thick cover of glacial sediments. The strong magnetic anomalies of the inner shelf are probably caused by dike swarms, similar to those observed further to the north in the Kangerdlugssuaq Fjord region. This interpretation is supported by the high basalt content of the sediment samples and the rough topography of the ice scoured plains which correlates in general with the magnetic fluctuations. The dike structures of the basement have been differentially eroded by the shelf ice. 6) The continental slope, extending from the shelf break at 313 m to a depth of 1270 m with an average slope of 11°, is characterized by delta-shaped projections in front of the shelf basins, by marginal plateaus, ridges and hills, by canyons and slumping features. The projections could be identified as glaciomarine sediment fans. This conclusion is supported by the strong decrease of magnetic field intensity. The deep sea hills and ridges with their greater magnetic intensities have to be regarded as basement outcrops projecting through the glaciomarine sediment cover. The upper continental rise, sloping seaward at about 2°, is composed of wide sediment fans and slump material. A marginal depression on the continental rise running parallel to the shelf edge has been identified. In this depression bottom currents capable of erosion have been recorded. South of Cape Farvel the depression extends to the accumulation zone of the "Eirik" sedimentary ridge. 7) By means of a study of the recent marine processes, postglacial modification of the ice-formed relief can be postulated. The retention effect of the fjord troughs and the high velocity of the East Greenland stream prevents the glacial features from being buried by sediments. Bottom currents capable of active erosion have only been found in the marginal depression on the continental rise. In addition, at the time of the lowest glacio-eustatic sea level, the shelf bottom was not situated in the zone of wave erosion. Only on the continental slope and rise bottom currents, sediment slumps and turbidity currents have led to significant recent modifications. Considering these results, the geomorphological development of the southeast Greenland continental terrace can be suggested as follows: 1. initial formation of a "peneplain", 2. fluvial incision, 3. submergence, and finally 4. glacial modification.
Resumo:
The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, 'Nova', 7219 m water depth) and southwest Pacific deep water (63KD, 'Tasman', 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records are considered suitable to reconstruct Eocene through Miocene paleoceanography for the South Pacific. The isotope time series of crusts Nova and Tasman suggest that equatorial Pacific deep water and waters from the Southern Ocean supplied the dissolved trace metals to both sites over the past 38 Myr. Changes in the isotopic composition of crust Nova are interpreted to reflect development of the Antarctic Circumpolar Current and changes in Pacific deep water circulation caused by the build up of the East Antarctic Ice Sheet. The Nd isotopic composition of the shallower water site in the southwest Pacific appears to have been more sensitive to circulation changes resulting from closure of the Indonesian seaway.
Resumo:
This paper presents the morpho-sedimentary characterization and interpretations of the assemblage of landforms of the East Greenland continental slope and Greenland Basin, based on swath bathymetry and sub-bottom TOPAS profiles. The interpretation of landforms reveals the glacial influence on recent sedimentary processes shaping the seafloor, including mass-wasting and turbidite flows. The timing of landform development points to a predominantly glacial origin of the sediment supplied to the continental margin, supporting the scenario of a Greenland Ice Sheet extending across the continental shelf, or even to the shelf-edge, during the Last Glacial Maximum (LGM). Major sedimentary processes along the central section of the eastern Greenland Continental Slope, the Norske margin, suggest a relatively high glacial sediment input during the LGM that, probably triggered by tectonic activity, led to the development of scarps and channels on the slope and debris flows on the continental rise. The more southerly Kejser Franz Josef margin has small-scale mass-wasting deposits and an extensive turbidite system that developed in relation to both channelised and unconfined turbidity flows which transferred sediments into the deep Greenland Basin.
Resumo:
Data are presented on concentration of hydrocarbons (HC) relative to concentrations of suspended matter, lipids, organic carbon, and chlorophyll a in surface waters and snow-ice cover of the East Antarctic coastal areas. It was shown that growth of concentrations of aliphatic HC (AHC) to 30 µg/l in surface waters takes place in frontal zones and under young ice formation. AHC concentration in snow increases with growth of aerosol concentration in the atmosphere. In the lower part of ice, at the boundary with seawater, despite low temperatures, autochthonous processes may provide high AHC concentrations (up to 289 µg/l). Within the snow-ice cover on fast ice, concentration co-variations of all the compounds considered take place.
Resumo:
This study focuses on mafic volcanic rocks from the Bouvet triple junction, which fall into six geochemically distinct groups: (1) N-MORB, the most widespread type, encountered throughout the study area. (2) Subalkaline volcanics, hawaiites and mugearites strongly enriched in lithophile elements and radiogenic isotopes and composing the Bouvet volcanic rise, and compositionally similar basalts and basaltic andesites from the Spiess Ridge, generated in a deeper, fertile mantle region. (3) Relatively weakly enriched basalts, T-MORB derived by the mixing of Type 1 and 2 melts and exposed near the axes of the Mid-Atlantic, Southwest Indian, and America-Antarctic Ridges. (4) Basalts with a degree of trace lithophile element enrichment similar to the Spiess Ridge and Bouvet Island rocks, but higher in K, P, Ti, and Cr. These occur within extensional structures: the rift valley of the Southwest Indian Ridge, grabens of the East Dislocation Zone, and the linear rise between the Spiess Ridge and Bouvet volcano. Their parental melts presumably separated from plume material that spread from the main channels and underwent fluid-involving differentiation in the mantle. (5) A volcanic suite ranging from basalt to rhyolite, characterized by low concentrations of lithophile elements, particularly TiO2, and occurring on the Shona Seamount and other compressional features within the Antarctic and South American plates near the Bouvet triple junction. Unlike Types 1 to 4, which display tholeiitic differentiation trends, this suite is calc-alkaline. Its parental melts were presumably related to the plume material as well but, subsequently, they underwent a profound differentiation involving fluids and assimilated surrounding rocks in closed magma chambers in the upper mantle. Alternatively, the Shona Seamount might be a fragment of an ancient oceanic island arc. (6) Enriched basalts, distinguished from the other enriched rock types in very high P and radiogenic isotope abundances and composing a tectonic uplift near the junction of the three rifts. It thus follows that the main factors responsible for the compositional diversity of volcanic rocks in this region include (i) mantle source heterogeneity, (ii) plume activity, (iii) an intricate geodynamic setup at the triple junction giving rise to stresses in adjacent plate areas, and (iv) the geological prehistory. The slow spreading rate and ensuing inefficient mixing of the heterogeneous mantle material result in strong spatial variations in basaltic compositions.
Resumo:
The sediments recovered during DSDP Leg 92 (Site 598) include a complete 16 m.y. record of hydrothermal sedimentation along the western flank of the East Pacific Rise at 19°S. Fifty samples from this sediment column were analyzed to test the hypothesis that the REE composition of the hydrothermal component is primarily acquired via scavenging from seawater. Site 598 provides an ideal sample suite for this purpose: the sediments are lithologically "simple," primarily consisting of a mixture of hydrothermal materials and biogenous carbonates; the composition of the hydrothermal component is essentially constant through space and time; and the sediments have undergone minimal diagenetic alteration. The following observations suggest the above-stated hypothesis is true. The Ce anomaly as well as key indices of light and heavy REE behavior all show that the REE pattern of hydrothermal sediments approaches that of seawater with increasing paleodistance from the rise crest. Moreover, shale-normalized REE patterns are similar to that of seawater, varying only in absolute REE content: the REE content increases with distance from the paleo-rise crest and exhibits a pronounced increase in sediments deposited below the paleolysocline. Based on significant correlative relationships between paleodistance from the rise crest and both the concentration and mass accumulation rates (MARs) of REEs and Fe, we conclude the REEs in the hydrothermal component are derived from the interaction of seawater and Fe in the hydrothermal plume.